The Deformation and Fracture of Skin under Insertion of Microneedle

Article Preview

Abstract:

Microneedle, as a novel way for transdermal drug delivery, due to its painless and minimally invasive, has recently attracted much attention. The present study investigated skin deformation and failure due to insertion by a single microneedle with nonlinear finite element method. The finite element model considered multilayered, non-linear and hyperelastic properties of the skin, and tissue failure was phenomenologically described by an effective stress failure criterion. The deformation and failure of skin and the force displacement behaviour of the microneedle are discussed. The numerical results show a good agreement with the reported experimental data. The performed study provided novel insights into skin failure due to insertion of microneedle, and provided useful information with which to optimise the microneedle design.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

779-783

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Henry, D.V. McAllister, M.G. Allen and M.R. Prausnitz: J. Pharm. Sci. 87 (1998), pp.922-925.

Google Scholar

[2] J.H. Park, M.G. Allen and M.R. Prausnitz: J. Control. Release. 104 (2005), pp.51-66.

Google Scholar

[3] J.D. Brazzle, I. Papautsky and A.B. Frazier: Dev. Sys. 3515 (1998), pp.116-124.

Google Scholar

[4] P. Griss, G. Stemme: J. Microelectromech. Syst. 12 (2003), pp.296-301.

Google Scholar

[5] S.J. Moon, S.L. Seung: Transducers'03, Boston, U.S.A., June 8-12 (2003).

Google Scholar

[6] S. Hashmi, P. Ling, G. Hashmi, M.L. Reed, R. Gaugler and W. Trimmer: Biotech. 19 (1995), pp.766-770.

Google Scholar

[7] S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen and M.R. Prausnitz: J. Biomech. 37 (2004), pp.1155-1163.

Google Scholar

[8] J.H. Park: Ph. D. dissertation (2004).

Google Scholar

[9] N. Roxhed, T.C. Gasser and P. Griss: J. Microelectromech. Syst. 16 (2007), pp.1429-1440.

Google Scholar

[10] B.F. Van Duzee: J. Invest. Dermatol. 71 (1978), pp.140-144.

Google Scholar

[11] R.H. Wildnauer, J.W. Bothwell and A.B. Douglass: J. Invest. Dermatol. 56 (1971), pp.72-80.

Google Scholar

[12] F.M. Hendriks, D. Brokken, C.W. Oomens, D.L. Bader and F.P. Baaijens: Med. Eng. Phys. 28 (2006), pp.259-266.

Google Scholar

[13] H.K. S: ABAQUS/ExplicitTM Theory and Users'Manuals, Version 5. 8, (1998).

Google Scholar

[14] G.J. Gerling, G.W. Thomas, In: WHC First Joint Eurohaptics Conference and Symposium. (2005), pp.63-72.

Google Scholar

[15] T.N. Gardner, G.A.D. Briggs: Skin. Res. Technol. 7 (2001), pp.254-261.

Google Scholar

[16] A.K. Mehta and F. Wong: Full Report from Fuels Research Laboratory, MIT, Cambridge, Massachusetts (1973).

Google Scholar

[17] F.A. Duck: Physical properties of tissue: A comprehensive reference book, Academic Press, Harcourt Brace Jovanovich, Publishers (1990).

Google Scholar

[18] A. Arias, J.A. Rodriguez-Martinez and A. Rusinek: Eng. Fract. Mech. 75 (2008), pp.1635-1656.

Google Scholar

[19] T. Borvik, O.S. Hopperstad, T. Berstad and M. Langseth: Int. J. Impact. Eng. 27 (2002), pp.37-64.

Google Scholar

[20] M.A. Iqbal, A. Chakrabarti, S. Beniwal and N.K. Gupta: Int. J. Impact. Eng. 37 (2010), pp.185-195.

Google Scholar

[21] C. Fu and H. Huang: Microsyst. Tech. 13 (2007), pp.293-298.

Google Scholar

[22] C.H. Lu, X.F. Yin and M. Wang: Sens. Actuators. A. 136 (2010), pp.412-416.

Google Scholar

[23] K. Kim, D.S. Park, H.M. Lu, W. Che, J.B. Lee and C.H. Ahn: J. Micromech. Microeng. 14 (2004), pp.597-603.

Google Scholar

[24] J.E. Bischoff, E.M. Arrudaa and K. Grosh: J. Biomech. 33 (2000), pp.645-652.

Google Scholar