Effect of Specimen Preparation Method on Transmission Electron Microscope Investigation in a Bulk Metallic Glass

Article Preview

Abstract:

In this paper, high resolution transmission electron microscopy (HRTEM) has been used to observe a Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at. %) bulk metallic glass (BMG) prepared from different methods, i.e. ion milling and electropolishing. The ion thinning brings out the white bulb pattern on the specimen surface and induces localized temperature increasing. The electropolishing does not influence microstructure of the amorphous phase. A new preparation technique of grinding method is introduced. For BMG, the electropolishing and grinding are the better method for TEM specimen preparation as compared with the ion thinning.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

799-802

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Thomas, M.J. Goringe, Transmission electron microscopy of materials, Wiley New York, (1979).

Google Scholar

[2] D.B. Williams, C.B. Carter, The Transmission Electron Microscope, Springer, (1996).

Google Scholar

[3] R.D. Heidenreich, R.D. Heidenreich, Fundamentals of transmission electron microscopy, Interscience New York, (1964).

Google Scholar

[4] J.F. Loffler, Intermetallics, 11 (2003) 529-540.

Google Scholar

[5] W.H. Wang, C. Dong, C.H. Shek, Materials Science & Engineering R-Reports, 44 (2004) 45-89.

Google Scholar

[6] J. He, N. Mattern, J. Tan, J.Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D.H. Kim, W.T. Kim, J. Eckert, Acta Materialia, 61 (2013) 2102-2112.

DOI: 10.1016/j.actamat.2012.12.031

Google Scholar

[7] J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, J. Eckert, Intermetallics, 31 (2012) 282-286.

DOI: 10.1016/j.intermet.2012.08.003

Google Scholar

[8] P.Y. Li, G. Wang, D. Ding, J. Shen, Journal of Alloys and Compounds, 550 (2013) 221-225.

Google Scholar

[9] J. Tan, F.S. Pan, L.J. Li, J.F. Wang, J. Eckert, Materials Science Forum, 745-746 (2013) 734-739.

Google Scholar

[10] J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Jom-Us, 61 (2009) 21-29.

Google Scholar

[11] W.H. Wang, Advanced Materials, 21 (2009) 4524-4544.

Google Scholar

[12] A.L. Greer, E. Ma, Mrs Bull, 32 (2007) 611-615.

Google Scholar

[13] A. Peker, W. Johnson, Applied Physics Letters, 63 (1993) 2342.

Google Scholar

[14] J. Shen, G. Wang, J. Sun, Z.H. Stachurski, C. Yan, L. Ye, B. Zhou, Intermetallics, 13 (2005) 79-85.

Google Scholar

[15] F. Luborsky, Butterworth and Co. Ltd., 1983, (1983) 534.

Google Scholar

[16] Y. Deng, L. He, Q. Zhang, H. Zhang, H. Ye, Ultramicroscopy, 98 (2004) 201-208.

Google Scholar

[17] Y. -L. Gao, J. Shen, J. -F. Sun, D. -M. Chen, G. Wang, H. -R. Wang, D. -W. Xing, H. -Z. Xian, B. -D. Zhou, Materials Letters, 57 (2003) 2341-2347.

Google Scholar

[18] M. Bakkal, A.J. Shih, R.O. Scattergood, C. Liu, Scripta materialia, 50 (2004) 583-588.

DOI: 10.1016/j.scriptamat.2003.11.052

Google Scholar

[19] J. Li, X. Gu, T. Hufnagel, Microscopy and Microanalysis, 9 (2003) 509-515.

Google Scholar

[20] I. Martin, T. Ohkubo, M. Ohnuma, B. Deconihout, K. Hono, Acta Materialia, 52 (2004) 4427-4435.

DOI: 10.1016/j.actamat.2004.05.038

Google Scholar

[21] B. Murty, D. Ping, M. Ohnuma, K. Hono, Acta materialia, 49 (2001) 3453-3462.

DOI: 10.1016/s1359-6454(01)00254-3

Google Scholar

[22] D.J. Barber, Ultramicroscopy, 52 (1993) 101-125.

Google Scholar

[23] S.J. Pearton, C.R. Abernathy, F. Ren, J.R. Lothian, Journal of Applied Physics, 76 (1994) 1210-1215.

Google Scholar

[24] S. Pang, D. Rathman, D. Silversmith, R. Mountain, P. DeGraff, Journal of applied physics, 54 (1983) 3272-3277.

DOI: 10.1063/1.332437

Google Scholar

[25] T. Hryniewicz, Surface and Coatings Technology, 64 (1994) 75-80.

Google Scholar