Spectroscopic Investigation of V3+:YAG Crystal

Article Preview

Abstract:

V3+ ions doped YAG crystals were grown using the Czochralski method in a highly pure argon atmosphere. The transmission spectrum of trivalent vanadium in YAG crystal has been measured at room temperature. Eight bands were observed in which two bands centered at 690nm (14493cm-1) and 1490nm (6711cm-1) are reported for the first time. By using the crystal-field theory and introducing the average covalent factor model, we also presented the theoretical calculations of the energy level splitting of tetrahedrally coordinated V3+ impurity systems in YAG crystal. These calculation results are in good agreement with the optical experiment data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

811-815

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberg: Opt. Lett. Vol. 20(1995), p.1017.

Google Scholar

[2] V. B. Sigachev, T. T. Basiev, M. E. Doroshenko, V. V. Osiko, and A. G. Papashvili: Proc. OSA Adv. Solid State Lasers. Vol. 24(1995), p.454.

Google Scholar

[3] T. T. Basiev, V. B. Sigachev, M. E. Doroshenko, A. G. Papashvili, P. G. Zverev, and V. V. Osiko: Proc. SPIE. Vol. 2498(1995), p.171.

Google Scholar

[4] P. G. Zverev, T. T. Basiev, J. T. Murray, R. C. Powell, and R. J. Reeves: Proc. OSA Adv. Solid State Lasers. Vol. 15(1993), p.156.

Google Scholar

[5] K. V. Yumashev, N. V. Kuleshov, A. M. Malyarevich, P. V. Prokoshin, V. G. Shcherbitsky, N. N. Posnov, and V. P. Mikhailov: J. Appl. Phys. Vol. 80(1996), p.4782.

DOI: 10.1364/assl.1996.pm9

Google Scholar

[6] S. Kuck, P. Jander, and G. Huber: Proc. OSA Adv. Solid State Lasers. Vol. 19 (1998), p.509.

Google Scholar

[7] Z. Frukacz, Z. Mierczyk, and D. A. Pawlak: Proc. SPIE. Vol. 3724(1999), p.329.

Google Scholar

[8] M. J. Weber and L. A. Riseberg: J. Chem. Phys. Vol. 55 (1971), p. (2032).

Google Scholar

[9] V. P. Mikhailov, N. L. Zhavoronkov, N. V. Kuleshov, V. A. Sandulenko, K. V. Yumashev, and P. V. Prokoshin: Proc. OSA Adv. Solid-State lasers. Vol. 15 (1993), p.354.

DOI: 10.1364/assl.1993.tl16

Google Scholar

[10] A. M. Malyarecich, I. A. Denisov, K. V. Yumashev. V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair: Appl Phys B. Lasers Opt. Vol. 67 (1998), p.555.

Google Scholar

[11] J. Ma, M. L. Du, and F. Miao: phys. Stat. sol. (b). Vol. 243(2006), p.1785.

Google Scholar

[12] M. G. Zhao and W. L. Yu: Crystal Field Theory (Sichuan Education Press, Chengdu, China, 1988). (in Chinese).

Google Scholar

[13] M. G. Zhao: Crystal Field And Electron Paramagnetic Resonance Theory (Science Press, Beijing, China, 1991). (in Chinese).

Google Scholar

[14] F. Euler and J. A. Bruce: Acta Cryst. Vol. 19(1965), p.971.

Google Scholar

[15] M. G. Zhao, M. L. Du and G. Y. Sen: J. Phys. C. Sol. Stat. Phys. Vol. 20(1987), p.5557.

Google Scholar

[16] D. Curie, C. Barthou, and B. Canny: J. Chem. Phys. Vol. 61 (1974), p.3048.

Google Scholar

[17] J. S. Griffith: The Theory of Transition-Metal Ions (Cambridge University Press, Oxford, 1961).

Google Scholar

[18] Y. Y. Yeung and C. Rudowicz: Computers. Chem. Vol. 16 (1992), p.207.

Google Scholar