[1]
H. Chen, X. Zhou, C. Ding, Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating, J. Eur. Ceram. Soc. 23 (2003) 1449–1455.
DOI: 10.1016/s0955-2219(02)00345-x
Google Scholar
[2]
C. Ramachandra, K.N. Lee, S.N. Tewari, Durability of TBCs with a surface environmental barrier layer under thermal cycling in air and in molten salt, Surf. Coat. Tech. 172 (2003) 150–157.
DOI: 10.1016/s0257-8972(03)00260-3
Google Scholar
[3]
A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, H. Herman. Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings, Mat. Sci. Eng. A. 359 (2003) 100-111.
DOI: 10.1016/s0921-5093(03)00342-3
Google Scholar
[4]
D. Basu, C. Funke, R. W. Steinbrech, Effect of heat treatment on elastic properties of separated thermal barrier coatings, J. Mater. Res. 14 (1999) 4643-4650.
DOI: 10.1557/jmr.1999.0628
Google Scholar
[5]
N. Czech, F. Schmitz, W. Stamm. Studies of bond coat oxidation and phase structure of TBCs. Surf. Coat. Tech. 113 (1999) 157-162.
DOI: 10.1016/s0257-8972(98)00835-4
Google Scholar
[6]
R. A. Miller Thermal barrier coatings for aircraft engines: history and directions. J. Thermal Spray Tech. 6 (1997) 35.
DOI: 10.1007/bf02646310
Google Scholar
[7]
L. Lelait, S. Alperin, R. Merrel. Alumina scale growth at zirconia-MCrAlY interface: a microstructural study. J. Mater. Sci. 27 (1992) 5-12.
DOI: 10.1007/bf02403637
Google Scholar
[8]
W. Brandl, H. J. Grabke, D. Toma, J. Kriiger. The oxidation behavior of sprayed MCrAlY coatings. Surf. Coat. Tech. 86-87 (1996) 41.
DOI: 10.1016/s0257-8972(96)03039-3
Google Scholar
[9]
X. Huo, J. S. Zhang, B. L. Wang, F. J. Wu, Y. F. Han. Evaluation of a NiCoCrAlY overlay coating on Ni3Al based alloy IC-6 after an engine test. Surf. Coat. Tech. 114 (1999) 174.
DOI: 10.1016/s0257-8972(99)00035-3
Google Scholar
[10]
H. Wolfram, B. George. Glass-ceramic technology. Ohio: The American Ceramic Society. (2002).
Google Scholar
[11]
S. Yılmaz, G. Bayrak, S. Sen, U. Sen. Structural characterization of basalt-based glass–ceramic coatings. Materials and Design. 27 (2006) 1092–1096.
DOI: 10.1016/j.matdes.2005.04.004
Google Scholar
[12]
D.E. Mack, S. M. Gross, R. Vaßen, D. Stöver. Metal-Glass based composites for application in TBC-systems. J. Thermal Spray Tech. 15 (2006) 652-656.
DOI: 10.1361/105996306x146983
Google Scholar
[13]
S. Das, S. Datta, D. Basu, G.C. Das. Thermal cyclic behavior of glass–ceramic bonded thermal barrier coating on nimonic alloy substrate. Ceram. Int. 35 (2009) 2123–2129.
DOI: 10.1016/j.ceramint.2008.11.025
Google Scholar
[14]
S. Das, S. Datta, D. Basu, G.C. Das. Glass-ceramic as oxidation resistant bond coat in thermal barrier coating system. Ceram. Int. 35 (2009) 1403-1406.
DOI: 10.1016/j.ceramint.2008.07.005
Google Scholar
[15]
M. Shen, S. Zhu, F. Wang. Cyclic oxidation behavior of glass-ceramic composite coatings on superalloy K38G at 1100℃. Thin Solid Films. 519 (2011) 484-4888.
DOI: 10.1016/j.tsf.2011.01.047
Google Scholar
[16]
I.W. Donald, Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 28 (1993) 2841-2886.
DOI: 10.1007/bf00354689
Google Scholar