[1]
D. Ra, K. Hana, Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology, J. Power Sources 163 (2006) 284-288.
DOI: 10.1016/j.jpowsour.2006.05.040
Google Scholar
[2]
J. Nan, D. Han, X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, J. Power Sources 152 (2005) 278-284.
DOI: 10.1016/j.jpowsour.2005.03.134
Google Scholar
[3]
A. Lundblad, B. Bergman, Synthesis of LiCoO2 starting from carbonate precursors II. Influence of calcination conditions and leaching, Solid State Ionics 96 (1997) 183-193.
DOI: 10.1016/s0167-2738(97)00017-9
Google Scholar
[4]
E. Plichta, M. Salomon, A rechargeable Li/LixCoO2 cell, J. Power Sources 21 (1987) 25-31.
DOI: 10.1016/0378-7753(87)80074-5
Google Scholar
[5]
C.M. Sabin, Battery paste recycling process, US Patent 5, 690, 718. (1997).
Google Scholar
[6]
S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, Advances in the recovering of spent lithium battery compounds, J. Power Sources 112 (2002) 247-254.
DOI: 10.1016/s0378-7753(02)00361-0
Google Scholar
[7]
J.C. Alfonso, N.G. Busnardo, R.G. Busnardo, in: Gaballah, I., Mishra, B., Solozobal, R., Tanaka, M. (Eds. ), Proceedings of REWAS, 2004, vol. III. TMS, Warrendale, Pennsylvania, USA, 2004, pp.2783-2785.
Google Scholar
[8]
B.R. Conard, The role of hydrometallurgy in achieving sustainable development, Hydrometallurgy 30 (1992) 1-28.
DOI: 10.1016/0304-386x(92)90074-a
Google Scholar
[9]
B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, Carbon dioxide capture and storage. In Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, (2005).
Google Scholar
[10]
H. Herzog, What future for carbon capture and sequestration? Environ. Sci. Technol. 35 (2001) 148-153.
Google Scholar
[11]
S. Bachu, CO2 storage in geological media: Role, means, status, and barriers to deployment, Prog. Energy Comb. Sci. 34 (2008) 254-273.
DOI: 10.1016/j.pecs.2007.10.001
Google Scholar
[12]
K. Nakagawa, T. Ohashi, A novel method of CO2 capture from high temperature gases, J. Electrochem. Soc. 145 (1998) 1344-1346.
DOI: 10.1149/1.1838462
Google Scholar
[13]
H. A. Mosqueda, C. Vazquez, P. Bosch, H. Pfeiffer, Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O), Chem. Mater. 18 (2006), 2307-2310.
DOI: 10.1002/chin.200629013
Google Scholar
[14]
H. Pfeiffer, P. Bosch, Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7), Chem. Mater. 17 (2005) 1704-1710.
DOI: 10.1021/cm047897+
Google Scholar
[15]
H. Pfeiffer, E. Lima, P. Bosch, Lithium-sodium metazirconate solid solutions, Li2-xNaxZrO3 (0 ≤ x≤ 2), a hierarchical architecture, Chem. Mater. 18 (2006), 2642-2647.
DOI: 10.1002/chin.200631019
Google Scholar
[16]
R. Xiong, J. Ida, Y. S. Lin, Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate, Chem. Eng. Sci. 58 (2003) 4377-4385.
DOI: 10.1016/s0009-2509(03)00319-1
Google Scholar
[17]
J. I. Ida, R. Xiong, Y. S. Lin, Synthesis and CO2 sorption properties of pure and modified lithium zircoante, Sep. Purif. Technol. 36 (2004) 41-51.
DOI: 10.1016/s1383-5866(03)00151-5
Google Scholar
[18]
K. Essaki, M. Kato, H. Uemoto, Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets, J. Mater. Sci. 45 (2005) 5017-5019.
DOI: 10.1007/s10853-005-1812-3
Google Scholar
[19]
M. Escobedo-Bretado, V. Guzmán-Velderrain, D. Lardizábal-Gutiérrez, V. Collins-Martínez, A. Lopez-Ortiz, A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent, Catal. Today 107-108 (2005) 863-867.
DOI: 10.1016/j.cattod.2005.07.098
Google Scholar
[20]
M. Kato, S. Yoshikawa, K. Nakagawa, Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations, J. Mater. Sci. Lett. 21 (2002) 485-487.
Google Scholar
[21]
K. Essaki, K. Nakagawa, M. Kato, H. Uemoto, CO2 absorption by lithium silicate at room temperature. J. Chem. Eng. Jpn. 37 (2004) 772-777.
DOI: 10.1252/jcej.37.772
Google Scholar