The Possibility of Using Oxide Cathode Materials of Spent Lithium-Ion Power Batteries for Carbon Dioxide Capture from Fossil Fuel Plant

Article Preview

Abstract:

Following during development of electric vehicles and other modern-life appliances, numerous lithium-ion batteries are fabricated and used every year, and their consumption is constantly expanding. However, the battery life of the lithium-ion batteries is about 3 to 5 years, and there are some hazardous and noxious substances in spent lithium-ion batteries. Therefore, it is necessary to recycling these spent batteries with some resourceful and environment friendly technology. In this work, we propose a novel technology of resourceful disposing and utilizing oxide cathode materials from spent power lithium-ion batteries, which is using the recovered compounds from spent lithium-ion batteries to capture carbon dioxide from fossil fuel plant. The detailed technical routes of laboratory scale test and bench scale test are also given in the work.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 779-780)

Pages:

52-55

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Ra, K. Hana, Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology, J. Power Sources 163 (2006) 284-288.

DOI: 10.1016/j.jpowsour.2006.05.040

Google Scholar

[2] J. Nan, D. Han, X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, J. Power Sources 152 (2005) 278-284.

DOI: 10.1016/j.jpowsour.2005.03.134

Google Scholar

[3] A. Lundblad, B. Bergman, Synthesis of LiCoO2 starting from carbonate precursors II. Influence of calcination conditions and leaching, Solid State Ionics 96 (1997) 183-193.

DOI: 10.1016/s0167-2738(97)00017-9

Google Scholar

[4] E. Plichta, M. Salomon, A rechargeable Li/LixCoO2 cell, J. Power Sources 21 (1987) 25-31.

DOI: 10.1016/0378-7753(87)80074-5

Google Scholar

[5] C.M. Sabin, Battery paste recycling process, US Patent 5, 690, 718. (1997).

Google Scholar

[6] S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, Advances in the recovering of spent lithium battery compounds, J. Power Sources 112 (2002) 247-254.

DOI: 10.1016/s0378-7753(02)00361-0

Google Scholar

[7] J.C. Alfonso, N.G. Busnardo, R.G. Busnardo, in: Gaballah, I., Mishra, B., Solozobal, R., Tanaka, M. (Eds. ), Proceedings of REWAS, 2004, vol. III. TMS, Warrendale, Pennsylvania, USA, 2004, pp.2783-2785.

Google Scholar

[8] B.R. Conard, The role of hydrometallurgy in achieving sustainable development, Hydrometallurgy 30 (1992) 1-28.

DOI: 10.1016/0304-386x(92)90074-a

Google Scholar

[9] B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, Carbon dioxide capture and storage. In Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, (2005).

Google Scholar

[10] H. Herzog, What future for carbon capture and sequestration? Environ. Sci. Technol. 35 (2001) 148-153.

Google Scholar

[11] S. Bachu, CO2 storage in geological media: Role, means, status, and barriers to deployment, Prog. Energy Comb. Sci. 34 (2008) 254-273.

DOI: 10.1016/j.pecs.2007.10.001

Google Scholar

[12] K. Nakagawa, T. Ohashi, A novel method of CO2 capture from high temperature gases, J. Electrochem. Soc. 145 (1998) 1344-1346.

DOI: 10.1149/1.1838462

Google Scholar

[13] H. A. Mosqueda, C. Vazquez, P. Bosch, H. Pfeiffer, Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O), Chem. Mater. 18 (2006), 2307-2310.

DOI: 10.1002/chin.200629013

Google Scholar

[14] H. Pfeiffer, P. Bosch, Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7), Chem. Mater. 17 (2005) 1704-1710.

DOI: 10.1021/cm047897+

Google Scholar

[15] H. Pfeiffer, E. Lima, P. Bosch, Lithium-sodium metazirconate solid solutions, Li2-xNaxZrO3 (0 ≤ x≤ 2), a hierarchical architecture, Chem. Mater. 18 (2006), 2642-2647.

DOI: 10.1002/chin.200631019

Google Scholar

[16] R. Xiong, J. Ida, Y. S. Lin, Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate, Chem. Eng. Sci. 58 (2003) 4377-4385.

DOI: 10.1016/s0009-2509(03)00319-1

Google Scholar

[17] J. I. Ida, R. Xiong, Y. S. Lin, Synthesis and CO2 sorption properties of pure and modified lithium zircoante, Sep. Purif. Technol. 36 (2004) 41-51.

DOI: 10.1016/s1383-5866(03)00151-5

Google Scholar

[18] K. Essaki, M. Kato, H. Uemoto, Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets, J. Mater. Sci. 45 (2005) 5017-5019.

DOI: 10.1007/s10853-005-1812-3

Google Scholar

[19] M. Escobedo-Bretado, V. Guzmán-Velderrain, D. Lardizábal-Gutiérrez, V. Collins-Martínez, A. Lopez-Ortiz, A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent, Catal. Today 107-108 (2005) 863-867.

DOI: 10.1016/j.cattod.2005.07.098

Google Scholar

[20] M. Kato, S. Yoshikawa, K. Nakagawa, Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations, J. Mater. Sci. Lett. 21 (2002) 485-487.

Google Scholar

[21] K. Essaki, K. Nakagawa, M. Kato, H. Uemoto, CO2 absorption by lithium silicate at room temperature. J. Chem. Eng. Jpn. 37 (2004) 772-777.

DOI: 10.1252/jcej.37.772

Google Scholar