A Study of Characteristic Fragmentation of Different C- and O-Glycosylation Position Flavonoids and their Aglycone by Quadrupole Time-of-Flight Tandem Mass Spectrometry

Article Preview

Abstract:

Flavonoids are important bioactive natural compounds, so the differentiation and structural characterization of flavonoids are important research topics. This research results provided valuable mass spectral data and reliable information for the identification of different C- and O-glycosylation position flavonoids and their aglycone. The high resolution electrospray ionization quadrupole time-of-flight tandem mass spectrometry was employed to identify one 8-C-glycosyl flavonoid, one 4-O-glycosyl, one 7-O-glycosyl, and two 3-O-glycosyl flavonoids and four aglycone in negative and positive ion mode with collision-induced dissociation. The characteristic ions of different C- and O-glycosylation position flavonoids and their aglycone were summarized and the fragmentation pathways were proposed in negative and positive ion mode. The MS/MS spectra obtained by UHPLC/Q-TOF-MS/MS analysis could be used for the structural characterization and differentiation of these compounds. These results have practical applications for the rapid identification and structural characterization of these compounds present in crude bioactive extracts or mixtures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1052-1059

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Coward, N.C. Barnes, K.D.R. Setchell and S. Barnes: J. Agr. Food Chem. Vol. 41 (1993), p. (1961).

Google Scholar

[2] J.B. Howes, D. Sullivan, N. Lai, P. Nestel, S. Pomeroy, L. West, J.A. Eden and L.G. Howes: Atherosclerosis Vol. 152 (2000), p.143.

DOI: 10.1016/s0021-9150(99)00437-2

Google Scholar

[3] N.L. Booth, C.R. Overk, P. Yao, J.E. Burdette, D. Nikolic, S.N. Chen, J.L. Bolton, R.B. van Breemen, P.G.F. Auli and N.R. Farnsworth: J. Altern. Complement. Med. Vol. 12 (2006), p.133.

Google Scholar

[4] X.F. Guo, Y.D. Yue, Z.F. Meng, F. Tang, J. Wang and X. Yao: J. Food Biochem. Vol. 37 (2013), doi: 10. 1111/j. 1745-4514. 2012. 00655. x.

Google Scholar

[5] R. van den Berg, G.R.M.M. Haenen, H. van den Berg, W. van der Vijgh and A. Bast: Food Chem. Vol. 70 (2000), p.391.

Google Scholar

[6] C.D. Kay, L. Hooper, P.A. Kroon, E.B. Rimm and A. Cassidy: Mol. Nutr. Food Res. Vol. 56 (2012), p.1605.

Google Scholar

[7] R. Gautam and S.M. Jachak: Med. Res. Rev. Vol. 29 (2009), p.767.

Google Scholar

[8] I. Sánchez, F. Gómez-Garibay, J. Taboada and B.H. Ruiz: Phytother. Res. Vol. 14 (2000), p.89.

Google Scholar

[9] G. Cao, E. Sofic and R.L. Prior: Free Radical Biol. Med. Vol. 22 (1997), p.749.

Google Scholar

[10] C.A. Rice-Evans, N.J. Miller and G. Paganga: Free Radical Biol. Med. Vol. 20 (1996), p.933.

Google Scholar

[11] C.G.M. Heijnen, G.R.M.M. Haenen, J.A.J.M. Vekemans and A. Bast: Environ. Toxicol. Pharmacol. Vol. 10 (2001), p.199.

Google Scholar

[12] J.K. Prasain, R. Pate, M. Kirk, L. Wilson, N. Botting, V.M. Darley-Usmar and S. Barnes: J. Mass Spectrom. Vol. 38 (2003), p.764.

DOI: 10.1002/jms.492

Google Scholar

[13] R.J. Hughes, T.R. Croley, C.D. Metcalfe and R.E. March: Int. J. Mass Spectrom. Vol. 210–211 (2001), p.371.

Google Scholar

[14] A.A. Shahat, F. Cuyckens, W. Wang, K.A. Abdel-Shafeek, H.A. Husseiny, S. Apers, S. Van Miert, L. Pieters, A.J. Vlietinck and M. Claeys: Rapid Commun. Mass Spectrom. Vol. 19 (2005), p.2172.

DOI: 10.1002/rcm.2041

Google Scholar

[15] F. Ferreres, A. Gil-Izquierdo, P.B. Andrade, P. Valentão and F.A. Tomás-Barberán: J. Chromatogr. A Vol. 1161 (2007), p.214.

Google Scholar

[16] F. Ferreres, A. Gil-Izquierdo, J. Vinholes, C. Grosso, P. Valentão and P.B. Andrade: Rapid Commun. Mass Spectrom. Vol. 30 (2011), p.700.

Google Scholar

[17] P. Truchado, P. Vit, F. Ferreres and F. Tomas-Barberan: J. Chromatogr. A Vol. 1218 (2011), p.7601.

Google Scholar

[18] D.Y. Gu, Y. Yang, R. Abdulla and H.A. Aisa: Rapid Commun. Mass Spectrom. Vol. 26 (2012), p.83.

Google Scholar

[19] M. Stobiecki: Phytochemistry Vol. 54 (2000), p.237.

Google Scholar

[20] F. Cuyckens and M. Claeys: J. Mass Spectrom. Vol. 39 (2004), p.1.

Google Scholar

[21] V. Vukics and A. Guttman: Mass Spectrom. Rev. Vol. 29 (2010), p.1.

Google Scholar

[22] K. Ablajan, Z. Abliz, X.Y. Shang, J.M. He, R.P. Zhang and J.G. Shi: J. Mass Spectrom. Vol. 41 (2006), p.352.

Google Scholar

[23] E. Hvattum and D. Ekeberg: J. Mass Spectrom. Vol. 38 (2003), p.43.

Google Scholar

[24] R.E. March, X.S. Miao, C.D. Metcalfe, M. Stobiecki and L. Marczak: Int. J. Mass Spectrom. Vol. 232 (2004), p.171.

Google Scholar

[25] K. Ablajan and A. Tuoheti: Rapid Commun. Mass Spectrom. Vol. 27 (2013), p.451.

Google Scholar

[26] Y.L. Ma, Q.M. Li, H. van den Heuvel and M. Claeys: Rapid Commun. Mass Spectrom. Vol. 11 (1997), p.1357.

Google Scholar

[27] B. Domon and C.E. Costello: Glycoconj. J. Vol. 5 (1988), p.397.

Google Scholar