Isolation and Characterization of Acid-Soluble Collagen from the Skin of Amiurus nebulosus

Article Preview

Abstract:

During fish processing, a large amount of waste, of the original raw materials is generated, such as skin, bone, scale, viscera and head. These useful resources have been mainly used as feedstuff or fertiliser with low value. To make more effective use of underutilized resources, collagen was isolated from the skin of Amiurus nebulosus using acetic acid and characterized for their potential usage in commercial applications. The yield of acid-soluble collagen (ASC) was 62.05% while the maximum absorbance of ASC was at 234 nm. Amino acid composition and SDS - PAGE suggested that the collagen is possibly possessive of type I collagen. Moreover, FTIR investigations showed the existence of helical arrangements of collagen where the denaturation temperature (Td) and shrinkage temperature (Ts) were 29.8°C and 65.12°C, respectively. There is a possibility that ASC could be utilized as an alternative source of collagen for food, cosmetic, biomedical and pharmaceutical purposes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1728-1735

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Muyonga, C. G. B. Cole, and K. G. Duodu: Food Chemistry: Vol. 85, pp.81-89, (2004).

Google Scholar

[2] A. J. Bailey, R. G. Paul, and L. Knott: Mechanisms of Ageing and Development: Vol. 106, pp.1-56, (1998).

Google Scholar

[3] M. Ogawa, R. J. Portier, and M. W. Moody: Food Chemistry: Vol. 88, pp.495-501, (2004).

Google Scholar

[4] A. Jongjareonrak, S. Benjakul, and W. Visessanguan: Food Chemistry: Vol. 93, pp.475-484, (2005).

Google Scholar

[5] M. Sadowska, I. Koodzieiska, and C. Niecikowska: Food Chemistry: Vol. 81, pp.257-262, (2003).

Google Scholar

[6] X. R. Shen, H. Kurihara, and K. Takahashi: Food Chemistry: Vol. 102, pp.1187-1191, (2007).

Google Scholar

[7] S. Mizuta, T. Miyagi, and T. Nishimiya: Food Chemistry: Vol. 79, pp.319-325, (2002).

Google Scholar

[8] S. Mizuta, S. Isobe, and R. Yoshinaka: Food Chemistry: Vol. 79, pp.9-13, (2002).

Google Scholar

[9] T. Nagai, and N. Suzuki: Food Chemistry: Vol. 68, pp.277-281, (2000).

Google Scholar

[10] L. L. Chen, L. Zhao, and H. Liu: Food and Machinery of china: Vol. 5, pp.118-121, (2010).

Google Scholar

[11] U. K. Laemimli: Nature: Vol. 227, pp.680-685, (1970).

Google Scholar

[12] J. H. Muyonga, C. G. B Cole, and K. G. Duodu: Food Chemistry: Vol. 86, pp.325-332, (2004).

Google Scholar

[13] S. Kimur, X. Zhu, and R. Matsui: Journal of Food Science: Vol. 53, pp.1315-1318, (1988).

Google Scholar

[14] F. X. Cui, C. H. Xue, and Z. J. Li: Food Chemistry: Vol. 100, pp.1120-1125, (2007).

Google Scholar

[15] M. Y. Yan, B. F. Li, and X. Zhao: Food Chemistry: Vol. 107, pp.1581-1586, (2008).

Google Scholar

[16] Y. Zhang, W. T. Liu, and G. Y. Li: Food Chemistry: Vol. 103, pp.906-912, (2007).

Google Scholar

[17] P. Kittiphattanabawon, S. Benjakul, and W. Visessanguan: Food Chemistry: Vol. 89, pp.363-372, (2005).

Google Scholar

[18] T. Nagai, Y. Araki, and N. Suzuki: Food Chemistry: Vol. 78, pp.173-177, (2002).

Google Scholar

[19] L. S. Senaratne, P. J. Park, and S. K. Kim: Bioresource Technology: Vol. 97, pp.191-197, (2006).

Google Scholar

[20] M. Zhang, W. T. Liu, and G.Y. Li: Food Chemistry: Vol. 115, pp.826-831, (2009).

Google Scholar

[21] T. Nagai, and N. Suzuki: Food Chemistry: Vol. 76, pp.149-153, (2002).

Google Scholar

[22] J. H. Hwang, S. Mizuta, and Y. Yokoyama: Food Chemistry: Vol. 100, pp.921-925, (2007).

Google Scholar

[23] M. M. Giraud-Guilille, L. Besseau, and C. Chopin: Biomaterials: Vol. 21, pp.899-906, (2000).

Google Scholar

[24] T. Ikoma, H. Kobayashi, and J. Tanaka: International Journal of Biological Macromolecules: Vol. 32, pp.199-204, (2003).

Google Scholar

[25] K. H. Gustavson: Nature: Vol. 175, pp.70-74, (1955).

Google Scholar

[26] K. A. Piez, and J. Gross: The Journal of Biological Chemistry: Vol. 235, pp.995-998, (1960).

Google Scholar

[27] H. Li, B. L. Liu, and L. Z. Gao: Food Chemistry: Vol. 84, pp.65-69, (2004).

Google Scholar

[28] H. Y. Liu, D. Li, and S. D. Guo: Food Chemistry: Vol. 101, pp.621-625, (2007).

Google Scholar

[29] M. Ogawa, M. W. Moody, and R. J. Portier: J. Agric. Food Chemistry: Vol. 51, pp.8088-8092, (2003).

Google Scholar

[30] L. H. Hao, and B. F. Li: Journal of Fishery Sciences of China: Vol. 6, pp.18-21, (1999).

Google Scholar

[31] B. J. Rigby: Nature: Vol. 219, pp.166-167, (1968).

Google Scholar

[32] T. Nagai, T. Ogawa, and T. Nakamura: J. Sci. Food Agric: Vol. 79, pp.855-858, (1999).

Google Scholar

[33] N. N. Fathima, B. Madhan, and J. R. Rao: International Journal of Biological Macromolecules: Vol. 34, pp.241-247, (2004).

Google Scholar

[34] N. N. Fathima, M. Balararman, and J. R. Rao: Journal of Inorganic Biochemistry: Vol. 95, pp.47-54, (2003).

Google Scholar

[35] R. Usha, and T. Ramasami: thermochim, Acta: Vol. 409, pp.201-206, (2004).

Google Scholar