Electrochemical Reduction of Carbon Dioxide in 1-Ethyl-3-Methylimidazolium BF4/Methanol Electrolyte

Article Preview

Abstract:

Carbon dioxide (CO2) can be electrochemically reduced to useful products under mild condition. In recent years, increased attempts have been devoted to use ionic liquid (IL) as the solvents, electrolytes and catalysts for CO2 reduction. However, owing to the high viscosity of ILs, CO2 diffusion in ILs is restrained, lead to low current density of CO2 reduction. To overcome this problem, in present work, we used methanol as the organic solvent to dilute 1-Ethyl-3-Methylimidazolium BF4 ([EmiBF4), an commonly used IL in electrochemistry, the obtained [BmiBF4/methanol solution have many unique properties, such as low viscosity, high ionic conductivity, high CO2 solubility and low cost. The current density of CO2 reduction reached 14.2 mA/cm2 at-1.95V (vs SCE) on Ag electrode. Electrochemical reduction of CO2 in [BmiBF4/methanol solution provides a hopeful technique for CO2 recycling utilization and renewable electrical energy storage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2573-2576

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. A. Olah, A. Goeppert, G. K. S. Prakash, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. Journal of Organic Chemistry, J. Org. Chem. 74 (2009).

DOI: 10.1021/jo801260f

Google Scholar

[2] R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catalysis Today 115 (2006) 73-79.

DOI: 10.1016/j.cattod.2006.02.020

Google Scholar

[3] E. E. Barton, D. M. Rampulla, A. B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell, J. Am. Chem. Soc. 130 (2008) 6342-6344.

DOI: 10.1021/ja0776327

Google Scholar

[4] L.M. Aeshala, S.U. Rahman, A. Verma, Effect of solid polymer electrolyte on electrochemical reduction of CO2, Separation and Purification Technology 94 (2012) 131-137.

DOI: 10.1016/j.seppur.2011.12.030

Google Scholar

[5] T. Yamamoto, D. A. Tryk, A. Fujishima, H. Ohata, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell, Electrochim. Acta. 47 (2002) 3327-3334.

DOI: 10.1016/s0013-4686(02)00253-0

Google Scholar

[6] G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today 148 (2009) 191-205.

DOI: 10.1016/j.cattod.2009.07.075

Google Scholar

[7] P. Hapiot, C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev. 108(2008)2238-2264.

DOI: 10.1021/cr0680686

Google Scholar

[8] L. V. Haynes, D. T. Sawyer, Electrochemistry of Carbon Dioxide in Dimethyl Sulfoxide at Gold and Mercury Electrodes, Anal. Chem. 39(1967)332-338.

DOI: 10.1021/ac60247a013

Google Scholar

[9] H. Yano, F. Shirai, M. Nakayama, K. Ogura, Electrochemical reduction of CO2 at three-phase (gas/liquid/Solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J. Electroanal. Chem. 533 (2002) 113-118.

DOI: 10.1016/s0022-0728(02)01078-1

Google Scholar

[10] I. Taniguchi, In Modern Aspects of Electrochemistry, Plenum, New York, (1989).

Google Scholar

[11] W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells, Wiley, (2003).

Google Scholar

[12] R. P. S. Chaplin and A. A. Wragg, Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, J. Appl. Electrochem. 33(2003) 1107-1123.

DOI: 10.1023/b:jach.0000004018.57792.b8

Google Scholar

[13] M. A. Scibioh, B. Viswanathan, Proceedings of the Indian National Science Academy, Part A: Physical Sciences, 70(2004) 407-409.

Google Scholar

[14] M. Mikkelsen, M. Jørgensen, F. C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3(2010)43-81.

DOI: 10.1039/b912904a

Google Scholar

[15] P. S. Surdhar, S. P. Mezyk, D. A. Armstrong, Reduction Potential of the CO2·- Radical Anion in Aqueous Solutions, J. Phys. Chem. 93(1989)3360-3363.

DOI: 10.1021/j100345a094

Google Scholar

[16] C. Amatore, Mechanism and Kinetic Characteristics of the Electrochemical Reduction of Carbon Dioxide in Media of Low Proton Availability, J. Am. Chem. Soc. 103(1981)5021-5023.

DOI: 10.1021/ja00407a008

Google Scholar

[17] B.A. Rosen , A. Salehi-Khojin, M.R. Thorson, W. Zhu, D. T. Whipple, P. J. A Kenis, M. I. Masel, Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 334(2011)643-644.

DOI: 10.1126/science.1209786

Google Scholar

[18] S. Chowdhury, R. S. Mohan, J. L. Scott, Reactivity of ionic liquids, Tetrahedron 63 (2007) 2363-2389.

DOI: 10.1016/j.tet.2006.11.001

Google Scholar