Phase Equilibria and Surface Tensions for MDEA, DEA and their Aqueous Solutions

Article Preview

Abstract:

The phase equilibira and surface tensions of N-methyldiethanolamine (MDEA), diethanolamine (DEA) and their aqueous solutions were investigated by using the perturbed-chain statistical associating fluid theory (PC-SAFT) and density-gradient theory (DGT). The molecular parameters and influence parameter were respectively regressed by fitting to the experimental data of phase equilibria and surface tensions of pure fluids. With the molecular parameters and influence parameter as input, the surface tensions of MDEA, DEA and their aqueous solutions were correlated satisfactorily.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2554-2559

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Nahicenovic, A. John, CO2 reduction and removal: measures for the next century, Energy 16(1991) 1347-1377.

DOI: 10.1016/0360-5442(91)90007-9

Google Scholar

[2] R. Steenevel, B. Berger, T. A. Torp, CO2 capture and storage: closing the knowing–doing gap, Chem. Eng. Res. Design 84(A9) (2006) 739–763.

Google Scholar

[3] J. Knudsen, J.N. Jensen, P. -J. Vilhelmsen, O. Biede, Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents, Energy Procedia 1(2009)783-790.

DOI: 10.1016/j.egypro.2009.01.104

Google Scholar

[4] L. Raynal, P. A. Bouillon, A. Gomez, P. Broutin, From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171(3)(2011) 742-752.

DOI: 10.1016/j.cej.2011.01.008

Google Scholar

[5] T. Chakravarty, U. K. Phukan, R. H. Weiland, Reaction of acid gases with mixtures of amines, Chem. Eng. Prog. 81(4) (1985) 32-36.

Google Scholar

[6] A. L Kohl, R. Nielsen, Gas Purification, 5th Ed, Gulf Publishing, Houston, TX, (1997).

Google Scholar

[7] L. Kaewsichan, O. Al-Bofersen, V. F. Yesavage, M.S. Selim, Predictions of the solubility of acid gases in monoethanolamine (MEA) and methyldiethanolamine (MDEA) solutions using the electrolyte-UNIQUAC model, Fluid Phase Equilibr. 183-184(2001).

DOI: 10.1016/s0378-3812(01)00429-0

Google Scholar

[8] N. A. Al-Baghli, S. A. Pruess, V. F. Yesavage, M.S. Selim, A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA, Fluid Phase Equilibr. 185(2001) 31-43.

DOI: 10.1016/s0378-3812(01)00454-x

Google Scholar

[9] E. Alvarez, R. Rendo, B. Sanjurjo, M. Sanchez-Vilas, J. M. Navaza, Surface tension of binary mixtures of water + n-methyldiethanolamine and ternary mixtures of this amine and water with monoethanolamine, diethanolamine, and 2-amino-2-methyl-1-propanol from 25 to 50°C, J. Chem. Eng. Data 43(1998).

DOI: 10.1021/je980106y

Google Scholar

[10] J. Aguila-Hernandez, A. Trejo, J Gracia-Fadrique. Surface tension of aqueous solutions of alkanolamines: single amines, blended amines and systems with nonionic surfactants. Fluid Phase Equilibria 185 (2001), 165-175.

DOI: 10.1016/s0378-3812(01)00467-8

Google Scholar

[11] G. Vazquez, E. Alvarez, J. M. Navaza , R. Rendo, E Romero. Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2- methyl-1-propanol and tertiary mixtures of these amines with water from 25 to 50℃ [J]. J.Chem.Eng.Data 42 (1)(1997).

DOI: 10.1021/je960238w

Google Scholar

[12] B. D. Smith, R Srivastava. Thermodynamic data for pure components, Elsevier, Amsterdam, (1986).

Google Scholar

[13] A. Venkat, G. Kumar, M. Kundu. Density and surface tension of aqueous solutions of (2-(methylamino)-ethanol +2-amino-2-methyl- 1-propanol) and (2-(methylamino)-ethanol + n-methyl-diethanolamine) from (298. 15 to 323. 15) K. J. Chem. Eng. Data, 55 (11)(2010).

DOI: 10.1021/je1002626

Google Scholar

[14] J. Gross, G Sadowski. Application of the perturbed-chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 41(2002), 5510-5515.

DOI: 10.1021/ie010954d

Google Scholar

[15] D. Fu. Investigation of surface tensions for pure associating fluids by PC-SAFT combined with density-gradient theory. Ind. Eng. Chem. Res. 46(22)(2007), 7378-7383.

DOI: 10.1021/ie070906e

Google Scholar

[16] J. W. Cahn, J. E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28(1958), 258-267.

DOI: 10.1063/1.1744102

Google Scholar

[17] I. Kim, H. F. Svendsen, E. L. Børresen Ebulliometric determination of vapor-liquid equilibria for pure water, Monoethanolamine, N-Methyldiethanolamine, 3-(Methylamino)-propylamine, and their binary and ternary solutions. J. Chem. Eng. Data, 53(11)(2008).

DOI: 10.1021/je800290k

Google Scholar

[18] E. Voutsas, A. Vrachnos, K. Magoulas. Measurement and thermodynamic modeling of the phase equilibrium of aqueous N-methyldiethanolamine solutions. Fluid Phase Equilibria 224(2)(2004) , 193-197.

DOI: 10.1016/j.fluid.2004.05.012

Google Scholar

[19] Z.Y. Cai, R. J. Xie, Z.L. Wu. Binary isobaric vapor-liquid equilibria of ethanolamines + water.J. Chem. Eng. Data, 41 (5)(1996), 1101-1103.

DOI: 10.1021/je960118o

Google Scholar

[20] A.S. Avlund, G. M. Kontogeorgis, M. L. Michelsen. Modeling systems containing alkanolamines with the CPA equation of state. Ind. Eng. Chem. Res., 47 (19)(2008), 7441-7446.

DOI: 10.1021/ie800040g

Google Scholar