Numerical Investigation on Performance of a Porous Medium Burner with Reciprocating Flow

Article Preview

Abstract:

Two-dimensional numerical investigations on the performance and structure improvement of a inert porous media burner with reciprocating flow are presented. An improved burner design is proposed and this leads to a wider high temperature profile and moderate pressure loss for extremely dilute CH4/air mixture with an equivalence ratio of 0.1.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2741-2744

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Howell, M.J. Hall, J.L. Ellzey: Combustion of hydrocarbon fuels with porous media. Prog Energy Sci. Vol. 22(2) (1996), pp.121-145.

DOI: 10.1016/0360-1285(96)00001-9

Google Scholar

[2] K. Hanamura, R. Echigo: Superadiabatic combustion in a porous medium. International Journal of Heat and Mass Transfer. Vol. 36(13) (1993), pp.3201-3209.

DOI: 10.1016/0017-9310(93)90004-p

Google Scholar

[3] J.G. Hoffmann, R. Echigom, H. Yoshida: Experimental study on combustion in porous media with a reciprocating flow system. Combust Flame. Vol. 111 (1997), pp.32-46.

DOI: 10.1016/s0010-2180(97)00099-0

Google Scholar

[4] F. Contarin, A.V. Saveliev, A.A. Fridman: A reciprocal flow filtration combustor with embedded heat exchangers: numerical study. International Journal of Heat and Mass Transfer. Vol. 46 (2003), pp.949-961.

DOI: 10.1016/s0017-9310(02)00371-x

Google Scholar

[5] F. Contarin, W.M. Barcellos, A.V. Saveliev: Energy extraction from a porous media reciprocal flow burner with embedded heat exchangers. Heat Mass Transfer. Vol. 127(2) (2005), pp.123-130.

DOI: 10.1115/1.1844539

Google Scholar

[6] X.M. Zhao, J.U. Shi, Y.B. Deng: Experimental and numerical investigation on performance of a porous medium burner with reciprocating flow. Fuel. 2009; Vol. 88 (2009), pp.206-213.

DOI: 10.1016/j.fuel.2008.07.020

Google Scholar

[7] S. Zhdanok, L.A. Kennedy, G. Koester: Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combust Flame. 1995; Vol. 100 (1995), pp.221-231.

DOI: 10.1016/0010-2180(94)00064-y

Google Scholar

[8] G. Brenner., K. Pickenaecker, O. Pickenacker: Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous media. Combust Flame. Vol. 123(1) (2000), pp.201-213.

DOI: 10.1016/s0010-2180(00)00163-2

Google Scholar

[9] A.A. Mohamad, S. Ramadhyani, R. Visknta: Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes. International Journal of Heat and Mass Transfer. Vol. 37(8) (1994), pp.1181-1191.

DOI: 10.1016/0017-9310(94)90204-6

Google Scholar

[10] W. Potze: Radiation heat transfer in axisymmetric quartz glass tubes. Journal of Quantitative Spectroscopy & Radiative Transfer. Vol. 84 (2004), pp.575-586.

DOI: 10.1016/s0022-4073(03)00272-3

Google Scholar

[11] A.J. Barra, J.L. Ellzey: Heat recirculation and heat transfer in porous burners. Combust Flame. Vol. 137 (2004), pp.230-241.

DOI: 10.1016/j.combustflame.2004.02.007

Google Scholar

[12] I. Malico, X.Y. Zhou, J.C.F. Pereira: Two-dimensional numerical study of combustion and pollutants formation in porous burner. Combust Sci Technology. Vol. 152 (2000), pp.57-79.

DOI: 10.1080/00102200008952127

Google Scholar

[13] D. Trimis, F. Durst: Combustion in porous media advances and applicants. Combustion Sci Technology. Vol. 121 (1996), pp.153-168.

DOI: 10.1080/00102209608935592

Google Scholar

[14] S. Jugjai, A. Sawananon: The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel. Vol. 83 (2004), pp.2369-2379.

DOI: 10.1016/j.fuel.2004.06.026

Google Scholar

[15] L.B. Younis, R. Visknta: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. International Journal of Heat and Mass Transfer. Vol. 36(6) (1993), pp.1425-1434.

DOI: 10.1016/s0017-9310(05)80053-5

Google Scholar

[16] P.F. Hsu, R.D. Matthews: The necessity of using detailed kinetics in models for premixed combustion within porous meida. Combust Flame. Vol. 93 (1993), pp.457-466.

DOI: 10.1016/0010-2180(93)90145-s

Google Scholar

[17] K.V. Dobrego, I.M. Kozlov, S.A. Zhdanok: Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer. Vol. 44 (2001), pp.3265-3272.

DOI: 10.1016/s0017-9310(00)00343-4

Google Scholar

[18] M.R. Henneke, J.L. Ellzey: Modeling of filtration combustion in a packed bed. Combust Flame. Vol. 117 (1999), pp.832-840.

DOI: 10.1016/s0010-2180(98)00129-1

Google Scholar

[19] L.A. Kennedy, J.P. Bingue, A. Saveliev: Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. 28th proceeding of the combustion institute . (2000), pp.1431-1438.

DOI: 10.1016/s0082-0784(00)80359-8

Google Scholar

[20] M. Drayton, A.V. Saveliev, L.A. Kennedy: Syngas production using superadiabatic combustion ultra-rich methane-air mixtures. 27th symposium (International) on combustion /the Combustion Institute. (1998), pp.1361-1367.

DOI: 10.1016/s0082-0784(98)80541-9

Google Scholar