[1]
J.R. Howell, M.J. Hall, J.L. Ellzey: Combustion of hydrocarbon fuels with porous media. Prog Energy Sci. Vol. 22(2) (1996), pp.121-145.
DOI: 10.1016/0360-1285(96)00001-9
Google Scholar
[2]
K. Hanamura, R. Echigo: Superadiabatic combustion in a porous medium. International Journal of Heat and Mass Transfer. Vol. 36(13) (1993), pp.3201-3209.
DOI: 10.1016/0017-9310(93)90004-p
Google Scholar
[3]
J.G. Hoffmann, R. Echigom, H. Yoshida: Experimental study on combustion in porous media with a reciprocating flow system. Combust Flame. Vol. 111 (1997), pp.32-46.
DOI: 10.1016/s0010-2180(97)00099-0
Google Scholar
[4]
F. Contarin, A.V. Saveliev, A.A. Fridman: A reciprocal flow filtration combustor with embedded heat exchangers: numerical study. International Journal of Heat and Mass Transfer. Vol. 46 (2003), pp.949-961.
DOI: 10.1016/s0017-9310(02)00371-x
Google Scholar
[5]
F. Contarin, W.M. Barcellos, A.V. Saveliev: Energy extraction from a porous media reciprocal flow burner with embedded heat exchangers. Heat Mass Transfer. Vol. 127(2) (2005), pp.123-130.
DOI: 10.1115/1.1844539
Google Scholar
[6]
X.M. Zhao, J.U. Shi, Y.B. Deng: Experimental and numerical investigation on performance of a porous medium burner with reciprocating flow. Fuel. 2009; Vol. 88 (2009), pp.206-213.
DOI: 10.1016/j.fuel.2008.07.020
Google Scholar
[7]
S. Zhdanok, L.A. Kennedy, G. Koester: Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combust Flame. 1995; Vol. 100 (1995), pp.221-231.
DOI: 10.1016/0010-2180(94)00064-y
Google Scholar
[8]
G. Brenner., K. Pickenaecker, O. Pickenacker: Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous media. Combust Flame. Vol. 123(1) (2000), pp.201-213.
DOI: 10.1016/s0010-2180(00)00163-2
Google Scholar
[9]
A.A. Mohamad, S. Ramadhyani, R. Visknta: Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes. International Journal of Heat and Mass Transfer. Vol. 37(8) (1994), pp.1181-1191.
DOI: 10.1016/0017-9310(94)90204-6
Google Scholar
[10]
W. Potze: Radiation heat transfer in axisymmetric quartz glass tubes. Journal of Quantitative Spectroscopy & Radiative Transfer. Vol. 84 (2004), pp.575-586.
DOI: 10.1016/s0022-4073(03)00272-3
Google Scholar
[11]
A.J. Barra, J.L. Ellzey: Heat recirculation and heat transfer in porous burners. Combust Flame. Vol. 137 (2004), pp.230-241.
DOI: 10.1016/j.combustflame.2004.02.007
Google Scholar
[12]
I. Malico, X.Y. Zhou, J.C.F. Pereira: Two-dimensional numerical study of combustion and pollutants formation in porous burner. Combust Sci Technology. Vol. 152 (2000), pp.57-79.
DOI: 10.1080/00102200008952127
Google Scholar
[13]
D. Trimis, F. Durst: Combustion in porous media advances and applicants. Combustion Sci Technology. Vol. 121 (1996), pp.153-168.
DOI: 10.1080/00102209608935592
Google Scholar
[14]
S. Jugjai, A. Sawananon: The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel. Vol. 83 (2004), pp.2369-2379.
DOI: 10.1016/j.fuel.2004.06.026
Google Scholar
[15]
L.B. Younis, R. Visknta: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. International Journal of Heat and Mass Transfer. Vol. 36(6) (1993), pp.1425-1434.
DOI: 10.1016/s0017-9310(05)80053-5
Google Scholar
[16]
P.F. Hsu, R.D. Matthews: The necessity of using detailed kinetics in models for premixed combustion within porous meida. Combust Flame. Vol. 93 (1993), pp.457-466.
DOI: 10.1016/0010-2180(93)90145-s
Google Scholar
[17]
K.V. Dobrego, I.M. Kozlov, S.A. Zhdanok: Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer. Vol. 44 (2001), pp.3265-3272.
DOI: 10.1016/s0017-9310(00)00343-4
Google Scholar
[18]
M.R. Henneke, J.L. Ellzey: Modeling of filtration combustion in a packed bed. Combust Flame. Vol. 117 (1999), pp.832-840.
DOI: 10.1016/s0010-2180(98)00129-1
Google Scholar
[19]
L.A. Kennedy, J.P. Bingue, A. Saveliev: Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. 28th proceeding of the combustion institute . (2000), pp.1431-1438.
DOI: 10.1016/s0082-0784(00)80359-8
Google Scholar
[20]
M. Drayton, A.V. Saveliev, L.A. Kennedy: Syngas production using superadiabatic combustion ultra-rich methane-air mixtures. 27th symposium (International) on combustion /the Combustion Institute. (1998), pp.1361-1367.
DOI: 10.1016/s0082-0784(98)80541-9
Google Scholar