[1]
Q. Wang, Biological mucosal phenomenon on the surface of paint, Shanghai Coatings, vol. 1, pp.20-23, (2000).
Google Scholar
[2]
H.M. Horbund and A. Freiberger, Slime films and their role in Marine fouling: a review, Ocean ENG, vol. 1, pp.631-634, (1970).
DOI: 10.1016/0029-8018(70)90006-5
Google Scholar
[3]
Z.G. Huang, Marine fouling organisms and their removal (I). Beijing, CHN: Ocean Press, (1984).
Google Scholar
[4]
D.M. Yebra, S. Kiil and K.D. Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat., vol. 50, pp.75-104, (2004).
DOI: 10.1016/j.porgcoat.2003.06.001
Google Scholar
[5]
A.M. Baty, P.A. Suci, B.J. Tyler and G.G. Geesey, Investigation of mussel adhesive protein adsorption on polystyrene and POLY (octadecyl methacrylate) using angle dependent xps, ATR-FTIR, and AFM, Journal of Colloid and Interface Science, vol. 177, pp.307-315, (1996).
DOI: 10.1006/jcis.1996.0036
Google Scholar
[6]
D.R. Filpula, S.M. Lee, R.P. Link, S.L. Strausberg and R.L. Strausberg, Structural and functional repetition in a Marine mussel adhesive protein, Biotechnol Prog., vol. 6, pp.171-177, (1990).
DOI: 10.1021/bp00003a001
Google Scholar
[7]
P.M. Olivieri, E.R. Baier and E.R. Loomis, Surface properties of mussel adhesive protein component films, Biomaterials, vol. 13, pp.1000-1008, (1992).
DOI: 10.1016/0142-9612(92)90150-m
Google Scholar
[8]
K. Green, R. Berdecia and L. Cheeks, Mussel adhesive protein: permeability characteristics when used as a basement membrane, CURR Eye Res., vol. 6, pp.835-838., (1987).
DOI: 10.3109/02713688709034851
Google Scholar
[9]
M. Wiegemann and B. Watermann, Peculiarities of barnacle adhesive cured on non-stick surfaces, Journal of Adhesion Science and Technology, vol. 17, pp.1957-1977, (2003).
DOI: 10.1163/156856103770572070
Google Scholar
[10]
Y.H. Gao and Y.F. Fu, Composition and variation of bacterial-films on immerge seawater material surfaces and their influences on attachment of halobios, Marine environmental science, vol. 20, pp.51-55, (2001).
Google Scholar
[11]
R.M. Weiner, R.R. Colwell and R.N. Jarman, Applications of biotechnology to the production, recovery and use of Marine polysaccharides, Biotechnology, vol. 3, pp.894-902, (1985).
DOI: 10.1038/nbt1085-899
Google Scholar
[12]
K.D. Hoagland, J.R. Rosowski, M.R. Gretz and S.C. Roemer, Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology, Journal of Phycology, vol. 29, pp.537-566, (1993).
DOI: 10.1111/j.0022-3646.1993.00537.x
Google Scholar
[13]
D.Z. Wang S.Y. Huang and Z.D. Cheng, Morphology, fine structure and chemical composition of extracellular polymeric substances in three marine diatom species, Oceanologia Et Limnologia Sinica, vol. 35, pp.273-278, (2004).
Google Scholar
[14]
B.A. Wustman, M.R. Gertz and K.D. Hoagland, Extracellular matrix assembly in diatoms (bacillariophyceae) (i. a model of adhesives based on chemical characterization and localization of polysaccharides from the Marine diatom achnanthes longipes and other diatoms), Plant Physiology, vol. 113, pp. l069-1059, (1997).
DOI: 10.1104/pp.113.4.1059
Google Scholar
[15]
H. Lee, N.F. Scherer and P.B. Messersmith, Single-molecule mechanics of mussel adhesion, PNAS, vol. 103, pp.12999-13003, (2006).
DOI: 10.1073/pnas.0605552103
Google Scholar
[16]
L. Qi, D. Gourdon and J.S. Cheng , Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, PNAS, vol. 104, pp.3782-3786, (2007).
DOI: 10.1073/pnas.0607852104
Google Scholar
[17]
M. Wiegemann, Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): Mechanisms and technical applications, Aquatic Sciences, vol. 67, pp.166-176, (2005).
DOI: 10.1007/s00027-005-0758-5
Google Scholar
[18]
A. Doraiswamy, R.J. Narayan and R. Cristescu, Laser processing of natural mussel adhesive protein thin films, Materials Science and Engineering: C, vol. 27, pp.409-413, (2007).
DOI: 10.1016/j.msec.2006.05.026
Google Scholar
[19]
I. Koji, T. Yasuhiro and M. Daisuke, Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family, J BIOL Chem., vol. 270, pp.6698-6701., (1995).
DOI: 10.1074/jbc.270.12.6698
Google Scholar
[20]
V.V. Papov, T.V. Diamond and K. Biemann, Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the Marine mussel Mytilus edulis,J. Biol. Chem, vol. 270, pp.20183-20192, (1995).
DOI: 10.1074/jbc.270.34.20183
Google Scholar
[21]
V. Vreeland, J.H. Waite, L. Epstein, Minireview-Polyphenols and oxidases in substratum adhesion by Marine algae and mussels, J Phycol, vol. 34, pp.1-8, (1998).
DOI: 10.1046/j.1529-8817.1998.340001.x
Google Scholar
[22]
J.H. Waite and X.Q. Xiao, Polyphosphoprotein from the Adhesive Pads of Mytilus edulis, Biochemistry, vol. 40, pp.2887-2893, (2001).
DOI: 10.1021/bi002718x
Google Scholar
[23]
M.E. Yu, J.Y. Hwang and T.J. Deming, Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins, Journal of the Chemical American Society, vol. 121, pp.5825-5826, (1999).
DOI: 10.1021/ja990469y
Google Scholar
[24]
S.M. Holl, D.C. Hansen, J.H. Waite and J. Schaefer, Solidstate NMR analysis of crosslinking in mussel protein glue, Arch Biochem Biophys, vol. 302, pp.255-258, (1993).
DOI: 10.1006/abbi.1993.1207
Google Scholar
[25]
K. Kendall, Thin-film peeling-the elastic term,J. Phys. D: Appl. PHYS, vol. 8, pp.1449-1452, (1975).
DOI: 10.1088/0022-3727/8/13/005
Google Scholar
[26]
K.J. Coyne, X.X. Qin and H.J. Waite, Extensible collagen in mussel byssus: a natural block copolymer, Science, vol. 277, pp.1830-1832, (1997).
DOI: 10.1126/science.277.5333.1830
Google Scholar
[27]
Y. Hiroyuki, Y. Sakai and K. Ohkawa, Synthesis and wettability characteristics of model adhesive protein sequences inspired by a Marine mussel, Biomacromolecules, vol. 1, pp.543-551, (2000).
DOI: 10.1021/bm000061p
Google Scholar
[28]
J.H. Waite, Nature's underwater adhesive specialist, International Journal of Adhesion and Adhesives, vol. 7, pp.9-14, (1987).
Google Scholar
[29]
J.H. Waite, Reverse engineering of bioadhesion in Marine mussels, Annals of the New YORK Academy of Sciences, vol. 875, pp.301-309, (1999).
DOI: 10.1111/j.1749-6632.1999.tb08513.x
Google Scholar
[30]
A.M. Baty, P.K. Leavitt and C.A. Siedlecki, Adsorption of adhesive proteins from the Marine Mussel, Mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spectroscopy and atomic force microscopy, Langmuir, vol. 13, pp.5702-5710, (1997).
DOI: 10.1021/la9610720
Google Scholar
[31]
J.A. Duine and J.A. Jongejan, Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor, Annual Review of Biochemistry, vol. 58, pp.403-426, (1989).
DOI: 10.1146/annurev.bi.58.070189.002155
Google Scholar
[32]
H. Zhao and J.H. Waite, Coating proteins: Structure and cross-linking in fp-1 from the green shell mussel Perna canaliculus, Biochemistry, vol. 44, pp.15915-15923, (2005).
DOI: 10.1021/bi051530g
Google Scholar
[33]
J. Sagert, J.S. Cheng and J.H. Waite. Biological adhesives. Berlin: Springer, 2006: 125-140.
Google Scholar
[34]
M.L. Mcdowell, A.L. Burzio, J.H. Waite and J. Schaefer, Rotational echo double resonance detection of Cross-links formed in mussel byssus under High-Flow stress, The Journal of Biological Chemistry, vol. 274, pp.20293-20295, (1999).
DOI: 10.1074/jbc.274.29.20293
Google Scholar
[35]
A.L. Burzio and J.H. Waite, Cross-Linking in adhesive quinoproteins: studies with model decapeptides, Biochemistry, vol. 39, pp.11147-11153, (2000).
DOI: 10.1021/bi0002434
Google Scholar