Research Progress on Adhesion Mechanism of Marine Organism

Article Preview

Abstract:

Marine adhesion organism includes biological mucosa such as marine bacteria, diatom, etc. and large adhesion organism such as mussel, barnacle, etc. Researches and analysis on adhesion mechanism of adhesion organism show that adhesion marine bacteria in biological mucosa will secrete protein-containing Polysaccharide polymer (PAVE) which can adhere to all kinds of surfaces. The reason is that in these secretions there is 3, 4-dihydroxyphenylalanine (DOPA) which is very viscous. Analysis on mussel, a large adhesion organism, shows that it is of super viscosity, which may result from its special molecular structure and the interaction way with substrates, and interstrand crosslink mediated by DOPA. DOPA plays an important role in this process. For marine bacteria and mussel, their viscosity is correlated with the generation and cross-linking of DOPA. On one hand, DOPA can enhance the viscosity of adhesion organism; on the other hand, it can improve the internal cohesion through cross-linking.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

840-846

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Wang, Biological mucosal phenomenon on the surface of paint, Shanghai Coatings, vol. 1, pp.20-23, (2000).

Google Scholar

[2] H.M. Horbund and A. Freiberger, Slime films and their role in Marine fouling: a review, Ocean ENG, vol. 1, pp.631-634, (1970).

DOI: 10.1016/0029-8018(70)90006-5

Google Scholar

[3] Z.G. Huang, Marine fouling organisms and their removal (I). Beijing, CHN: Ocean Press, (1984).

Google Scholar

[4] D.M. Yebra, S. Kiil and K.D. Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat., vol. 50, pp.75-104, (2004).

DOI: 10.1016/j.porgcoat.2003.06.001

Google Scholar

[5] A.M. Baty, P.A. Suci, B.J. Tyler and G.G. Geesey, Investigation of mussel adhesive protein adsorption on polystyrene and POLY (octadecyl methacrylate) using angle dependent xps, ATR-FTIR, and AFM, Journal of Colloid and Interface Science, vol. 177, pp.307-315, (1996).

DOI: 10.1006/jcis.1996.0036

Google Scholar

[6] D.R. Filpula, S.M. Lee, R.P. Link, S.L. Strausberg and R.L. Strausberg, Structural and functional repetition in a Marine mussel adhesive protein, Biotechnol Prog., vol. 6, pp.171-177, (1990).

DOI: 10.1021/bp00003a001

Google Scholar

[7] P.M. Olivieri, E.R. Baier and E.R. Loomis, Surface properties of mussel adhesive protein component films, Biomaterials, vol. 13, pp.1000-1008, (1992).

DOI: 10.1016/0142-9612(92)90150-m

Google Scholar

[8] K. Green, R. Berdecia and L. Cheeks, Mussel adhesive protein: permeability characteristics when used as a basement membrane, CURR Eye Res., vol. 6, pp.835-838., (1987).

DOI: 10.3109/02713688709034851

Google Scholar

[9] M. Wiegemann and B. Watermann, Peculiarities of barnacle adhesive cured on non-stick surfaces, Journal of Adhesion Science and Technology, vol. 17, pp.1957-1977, (2003).

DOI: 10.1163/156856103770572070

Google Scholar

[10] Y.H. Gao and Y.F. Fu, Composition and variation of bacterial-films on immerge seawater material surfaces and their influences on attachment of halobios, Marine environmental science, vol. 20, pp.51-55, (2001).

Google Scholar

[11] R.M. Weiner, R.R. Colwell and R.N. Jarman, Applications of biotechnology to the production, recovery and use of Marine polysaccharides, Biotechnology, vol. 3, pp.894-902, (1985).

DOI: 10.1038/nbt1085-899

Google Scholar

[12] K.D. Hoagland, J.R. Rosowski, M.R. Gretz and S.C. Roemer, Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology, Journal of Phycology, vol. 29, pp.537-566, (1993).

DOI: 10.1111/j.0022-3646.1993.00537.x

Google Scholar

[13] D.Z. Wang S.Y. Huang and Z.D. Cheng, Morphology, fine structure and chemical composition of extracellular polymeric substances in three marine diatom species, Oceanologia Et Limnologia Sinica, vol. 35, pp.273-278, (2004).

Google Scholar

[14] B.A. Wustman, M.R. Gertz and K.D. Hoagland, Extracellular matrix assembly in diatoms (bacillariophyceae) (i. a model of adhesives based on chemical characterization and localization of polysaccharides from the Marine diatom achnanthes longipes and other diatoms), Plant Physiology, vol. 113, pp. l069-1059, (1997).

DOI: 10.1104/pp.113.4.1059

Google Scholar

[15] H. Lee, N.F. Scherer and P.B. Messersmith, Single-molecule mechanics of mussel adhesion, PNAS, vol. 103, pp.12999-13003, (2006).

DOI: 10.1073/pnas.0605552103

Google Scholar

[16] L. Qi, D. Gourdon and J.S. Cheng , Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, PNAS, vol. 104, pp.3782-3786, (2007).

DOI: 10.1073/pnas.0607852104

Google Scholar

[17] M. Wiegemann, Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): Mechanisms and technical applications, Aquatic Sciences, vol. 67, pp.166-176, (2005).

DOI: 10.1007/s00027-005-0758-5

Google Scholar

[18] A. Doraiswamy, R.J. Narayan and R. Cristescu, Laser processing of natural mussel adhesive protein thin films, Materials Science and Engineering: C, vol. 27, pp.409-413, (2007).

DOI: 10.1016/j.msec.2006.05.026

Google Scholar

[19] I. Koji, T. Yasuhiro and M. Daisuke, Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family, J BIOL Chem., vol. 270, pp.6698-6701., (1995).

DOI: 10.1074/jbc.270.12.6698

Google Scholar

[20] V.V. Papov, T.V. Diamond and K. Biemann, Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the Marine mussel Mytilus edulis,J. Biol. Chem, vol. 270, pp.20183-20192, (1995).

DOI: 10.1074/jbc.270.34.20183

Google Scholar

[21] V. Vreeland, J.H. Waite, L. Epstein, Minireview-Polyphenols and oxidases in substratum adhesion by Marine algae and mussels, J Phycol, vol. 34, pp.1-8, (1998).

DOI: 10.1046/j.1529-8817.1998.340001.x

Google Scholar

[22] J.H. Waite and X.Q. Xiao, Polyphosphoprotein from the Adhesive Pads of Mytilus edulis, Biochemistry, vol. 40, pp.2887-2893, (2001).

DOI: 10.1021/bi002718x

Google Scholar

[23] M.E. Yu, J.Y. Hwang and T.J. Deming, Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins, Journal of the Chemical American Society, vol. 121, pp.5825-5826, (1999).

DOI: 10.1021/ja990469y

Google Scholar

[24] S.M. Holl, D.C. Hansen, J.H. Waite and J. Schaefer, Solidstate NMR analysis of crosslinking in mussel protein glue, Arch Biochem Biophys, vol. 302, pp.255-258, (1993).

DOI: 10.1006/abbi.1993.1207

Google Scholar

[25] K. Kendall, Thin-film peeling-the elastic term,J. Phys. D: Appl. PHYS, vol. 8, pp.1449-1452, (1975).

DOI: 10.1088/0022-3727/8/13/005

Google Scholar

[26] K.J. Coyne, X.X. Qin and H.J. Waite, Extensible collagen in mussel byssus: a natural block copolymer, Science, vol. 277, pp.1830-1832, (1997).

DOI: 10.1126/science.277.5333.1830

Google Scholar

[27] Y. Hiroyuki, Y. Sakai and K. Ohkawa, Synthesis and wettability characteristics of model adhesive protein sequences inspired by a Marine mussel, Biomacromolecules, vol. 1, pp.543-551, (2000).

DOI: 10.1021/bm000061p

Google Scholar

[28] J.H. Waite, Nature's underwater adhesive specialist, International Journal of Adhesion and Adhesives, vol. 7, pp.9-14, (1987).

Google Scholar

[29] J.H. Waite, Reverse engineering of bioadhesion in Marine mussels, Annals of the New YORK Academy of Sciences, vol. 875, pp.301-309, (1999).

DOI: 10.1111/j.1749-6632.1999.tb08513.x

Google Scholar

[30] A.M. Baty, P.K. Leavitt and C.A. Siedlecki, Adsorption of adhesive proteins from the Marine Mussel, Mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spectroscopy and atomic force microscopy, Langmuir, vol. 13, pp.5702-5710, (1997).

DOI: 10.1021/la9610720

Google Scholar

[31] J.A. Duine and J.A. Jongejan, Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor, Annual Review of Biochemistry, vol. 58, pp.403-426, (1989).

DOI: 10.1146/annurev.bi.58.070189.002155

Google Scholar

[32] H. Zhao and J.H. Waite, Coating proteins: Structure and cross-linking in fp-1 from the green shell mussel Perna canaliculus, Biochemistry, vol. 44, pp.15915-15923, (2005).

DOI: 10.1021/bi051530g

Google Scholar

[33] J. Sagert, J.S. Cheng and J.H. Waite. Biological adhesives. Berlin: Springer, 2006: 125-140.

Google Scholar

[34] M.L. Mcdowell, A.L. Burzio, J.H. Waite and J. Schaefer, Rotational echo double resonance detection of Cross-links formed in mussel byssus under High-Flow stress, The Journal of Biological Chemistry, vol. 274, pp.20293-20295, (1999).

DOI: 10.1074/jbc.274.29.20293

Google Scholar

[35] A.L. Burzio and J.H. Waite, Cross-Linking in adhesive quinoproteins:  studies with model decapeptides, Biochemistry, vol. 39, pp.11147-11153, (2000).

DOI: 10.1021/bi0002434

Google Scholar