Structural and Optical Properties of Well-Aligned ZnO Nanorod Arrays Grown by a Hydrothermal Method

Article Preview

Abstract:

In this paper, vertically aligned ZnO nanorod arrays were synthesized by a simple hydrothermal process. The microstructure, morphology and optical properties of the as-prepared samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum (PL). The results show that the vertically aligned ZnO nanorod arrays are hexagonal wurtzite structures with the high (002)-orientation. At room temperature, the PL measurements illustrate that the as-prepared ZnO nanorod arrays exhibit a strong ultraviolet (UV) emission centered at about 378nm and a broad yellow-green emission centered at about 554 nm. A possible origin of the yellow-green emission of the ZnO nanorod arrays related to the intrinsic defect is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

436-439

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Huang, S. Mao, H. Feick, et al.: Science Vol. 292(2001), p.1897.

Google Scholar

[2] M. Law, L. E Greene, C. Justin, et al.: Nature materials. Vol. 4(2005), p.455.

Google Scholar

[3] Y. Qin, X.D. Wang and Z.L. Wang: Nature. Vol. 451(2008), p.809.

Google Scholar

[4] R.D. Janiero and D. Brasil: ECS. Trans. Vol. 9(2007), p.539.

Google Scholar

[5] Z. Brankovic, G. Brankovic, et al.: Ceramics International. Vol. 27(2001), p.115.

Google Scholar

[6] Q. Wan., Q. H. Li, Y. J. Chen, et al.: Applied Physics Letters Vol. 84 (2004), p.3653.

Google Scholar

[7] Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, et al.: Applied Physics Letters. Vol. 83(2003), p.4719.

Google Scholar

[8] C. L. Hsu, S.J. Chang, Y.R. Lin, et al.: Chemical Physics Letters. Vol. 416(2005), p.75.

Google Scholar

[9] L.E. Greene, M. Law, P.D. Yang, et al.: Angewandte Chemie. Vol. 42(2003), p.3031.

Google Scholar

[10] M. Guo, P. Diao and S. M. Cai.: Journal of Solid State Chemistry. Vol. 178(2005), p.1864.

Google Scholar

[11] Z.K. Li, X.T. Huang, J.P. Liu, et al.: Materials LettersVol. 61(2007), p.4362.

Google Scholar

[12] M.J. Zheng, L.D. Zhang, G.H. Li, et al.: Chemical Physics Letters. Vol. 363(2002), p.123.

Google Scholar

[13] C.H. Hung and W.T. Whang: Journal of Crystal GrowthVol. 268(2004), p.242.

Google Scholar

[14] C.C. Ting, C. H. Li, C.Y. Kuo, et al.: Thin Solid Films. Vol. 518(2010), p.4156.

Google Scholar

[15] L.L. Yang, Q.X. Zhao, M. Willander, et al.: Journal of Crystal Growth Vol. 311(2009), p.1046.

Google Scholar

[16] K. Vanheusden, W.L. Warren, C.H. Seager, et al.: Journal of Applied PhysicsVol. 79(1996), p.7983.

Google Scholar

[17] B.X. Lin, Z.X. Fu and Y.B. Jia: Applied Physics Letters Vol. 79(2001), p.942.

Google Scholar

[18] Q.X. Zhao, P. Klason, M. Willander, et al.: Applied Physics Letters Vol. 87(2005), p.211912.

Google Scholar

[19] A.F. Kohan, G. Ceder and D. Morgan: Physical Review B Vol. 61(2000), p.15019.

Google Scholar

[20] C.G. VandeWalle: Physica B: Condensed Matter. Vol. 308(2001), p.899.

Google Scholar