Synthesis and Characterization of MgO-Filled Rectangular Carbon Nanocapsules

Article Preview

Abstract:

A novel MgO-filled rectangular carbon nanocapsules was fabricated by pyrolyzing acetonitrile with the assistance of MgO and a small quantity of Fe3+. The nanocapsules were analyzed by powder X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The lengths of the rectangular nanocapsules sides range from 40 nm to 60 nm and the core part of the rectangular carbon nanocapsules consists of cubic phase MgO. A small quantity of Fe catalysts plays an important role in the growth of rectangular carbon nanocapsules.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

444-448

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature Vol. 318(1985), p.162.

Google Scholar

[2] S. Iijima, Nature Vol. 354 (1991), p.56.

Google Scholar

[3] I. K. Song, Y. S. Cho, G. S. Choi, J. B. Park, D. J. Kim, Diamond Relat. Mater. Vol. 13 (2004) 1210.

Google Scholar

[4] D. Ugarte, Carbon Vol. 33 (1995), p.989.

Google Scholar

[5] B. S. Xu, S. I. Tanaka, Acta Mater Vol. 46 (1998), p.5249.

Google Scholar

[6] N. Sano, H. Akazawa, T. Kikuchi, T. Kanki, Carbon Vol. 41 (2003), p.2159.

Google Scholar

[7] Y. Lu, Z. P. Zhu, Z.Y. Liu, Carbon Vol. 43 (2005), p.369.

Google Scholar

[8] S. A. Majetich et al., Phys. Rev. B Vol. 48 (1993), p.16845.

Google Scholar

[9] R. C. Che, L-.M. Peng, X. F. Duan, et al, Adv. Mater. Vol. 16 (2004), p.401.

Google Scholar

[10] A. Wadhawan, D. Garrett, J. M. Perez, Appl. Phys. Lett. 83 Vol. (2003) , p.2683.

Google Scholar

[11] W. Z. Wu, Z. P. Zhu, Z.Y. Liu, Y. N. Xie, J. Zhang, T.D. Hu, Carbon Vol. 41 (2003) , p.317.

Google Scholar

[12] N. Sano, H. Wang, I. M. Alexandrou, M. Chhowalla, K. Teo, G. Amaratunga, J. Appl. Phys. Vol. 92 (2002), p.2783.

Google Scholar

[13] G. H. Lee, S. H. Huh, J. W. Jeong, H. C. Ri, J Magn. Magn. Mater. Vol. 246 (2002), p.404.

Google Scholar

[14] M. Tomita, Y. Saito, T. Hayashi, Jpn. J. Appl. Phys. Vol. 32(1993), p. L280.

Google Scholar

[15] Y. Saito, M. Okuda, T. Yoshikawa, A. Kasuya, Y. Nishina, J. Phys. Chem. Vol. 98 (1994), p.6696.

Google Scholar

[16] V.P. Dravid, J. J. Host, M. H. Teng, B. Elliott, J. Hwang, D.L. Johnson, T.O. Mason, J. R. Weertman, Nature Vol. 374(1995), p.602.

DOI: 10.1038/374602a0

Google Scholar

[17] Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina, Chem. Phys. Lett. Vol. 212 (1993), p.379.

DOI: 10.1016/0009-2614(93)89341-e

Google Scholar

[18] Y. Saito, J. Ma, J. Nakashima, M. Masuda, Z. Phys. D Vol. 40 (1997), p.170.

Google Scholar

[19] P.D. Yang, C.M. Lieber, Science Vol. 273 (1996), p.1836.

Google Scholar

[20] R.Z. Ma, Y. Bando, Chem. Phys. Lett. Vol. 370 (2003), p.770.

Google Scholar

[21] Y. Q. Zhu, W. K. Hsu, W. Z. Zhou, M. Terrones, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. Vol. 347 (2001), p.337.

Google Scholar

[22] G. Auday, Ph. Guillot, J. Galy, J. App1. Phys. Vol. 88 (2000), p.4871.

Google Scholar

[23] H. S. Uhm, E. H. Choi, G. S. Cho, App1. Phys. Lett. Vol. 78 (2001), p.592.

Google Scholar

[24] P. D. Yang, C. M. Lieber, Science Vol. 273 (1996 ), p.1836.

Google Scholar

[25] P. D. Yang, C. M. Lieber, J. Mater. Res. Vol. 12 (1997), p.2981.

Google Scholar

[26] Y. Saito, T. Matsumoto, J. Cryst. Growth Vol. 187 (1997), p.402.

Google Scholar