Surface-Modification of Sulfur Nanoparticles with Surfactants and Application in Agriculture

Article Preview

Abstract:

This work presents the results of obtaining the sulfur nanoparticles, which can be used in agriculture as a fungicide. Sulfur nanoparticles were obtained by modifying the surface of sulfur using various surfactants including cetyltriammoniumbromide (CTAB), sodium dodecylbenzene sulfanate (SDBS) and Triton X-100 (TX-100). The size, crystal structure and morphology of sulfur nanoparticles were determined by methods as laser size analyzing (LSA), X-ray diffraction (XRD), scanning electron microscope (SEM). It was found that the nanoparticles had a sulfur monoclinic β-form struture, and their average size was in the range of 1000-1500 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

475-479

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Ober, Materials Flow of Sulfur: US Geological Survey Open File Report 02-298, 2003. <http: /pubs. usgs. gov/of/2002/of02-298/>.

Google Scholar

[2] X. Yu, J. Xie, J. Yang, K. Wang, J. Power Sources 132 (2004) 181.

Google Scholar

[3] W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Electrochim. Acta 51 (2006) 1330.

Google Scholar

[4] Z. Yong, Z. Wei, Z. Ping, W. Lizhen, X. Tongchi, H. Xinguo, Y. Zhenxing, J. Wuhan Univ. Technol. – Mater. Sci. Ed. 22 (2007) 234.

Google Scholar

[5] X. Yu, J. Xie, J. Yang, K. Wang, J. Power Sources 132 (2004) 181.

Google Scholar

[6] W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Electrochim. Acta 51 (2006) 1330.

Google Scholar

[7] Z. Yong, Z. Wei, Z. Ping, W. Lizhen, X. Tongchi, H. Xinguo, Y. Zhenxing, J. Wuhan Univ. Technol. – Mater. Sci. Ed. 22 (2007) 234.

Google Scholar

[8] T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, T. Tatsumi, J. Power Sources 182 (2008) 621.

DOI: 10.1016/j.jpowsour.2008.03.030

Google Scholar

[9] P. Santiago, E. Carvajal, D.M. Mendoza, L. Rendon, Microsc. Microanal. 12 (2006) 690.

Google Scholar

[10] M.A. Ellis, D.C. Ferree, R.C. Funt, L.V. Madden, Plant Dis. 82 (1998) 428.

Google Scholar

[11] A.S. Deshpande, R.B. Khomane, B.K. Vaidya, R.M. Joshi, A.S. Harle, B.D. Kulkarni, Nanoscale Res. Lett. 3 (2008) 221.

Google Scholar

[12] Y. Guo, J. Zhao, S. Yang, K. Yu, Z. Wang, H. Zhang, Powder Technol. 162 (2006) 83.

Google Scholar

[13] X.Y. Xie, W.J. Zheng, Y. Bai, J. Liu, Mater. Lett. 63 (2009) 1374.

Google Scholar

[14] Rajib Ghosh Chaudhuri, Santanu Paria, Journal of Colloid and Interface Science. 343 (2010) 439-446.

Google Scholar

[15] M.C. Michalski, V.J. Saramago, Colloid Interface Sci. 227 (2010) 380.

Google Scholar

[16] S. Ankri, D. Mirelman, Antimicrobial properties of allicin from garlic. Microbes Infect. (1999) 125–129.

DOI: 10.1016/s1286-4579(99)80003-3

Google Scholar