Initial Surface Reactions Mechanisms of Atomic Layer Deposition TiO2 Using Ti(OCH3)4 and H2O as Precursors

Article Preview

Abstract:

The initial surface reaction mechanisms of atomic layer depositionTiO2 using Ti (OCH3)4 and H2O as the precursors are investigated by density functional theory. The ALD process is divided into two half-reactions, i.e., Ti (OCH3)4 and H2O half-reactions. The adsorption of Ti (OCH3)4 on OH/Si (100)2×1 surface is exothermic. However, the overall reaction of Ti (OCH3)4 is endothermic. In addition, H2O half-reactions are endothermic and thermodynamically unfavorable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

832-836

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Aarik, A. Aidla, T. Uustare, V. Sammelselg: J. Cryst. Growth Vol. 148 (1995), p.268.

Google Scholar

[2] J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, T. Uustare: J. Cryst. Growth Vol. 169 (1996), p.496.

DOI: 10.1016/s0022-0248(96)00423-x

Google Scholar

[3] J. Aarik, A. Aidla, A. -A. Kiisler, T. Uustare, V. Sammelselg: Thin Solid Films Vol. 305 (1997), p.270.

DOI: 10.1016/s0040-6090(97)00135-1

Google Scholar

[4] V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, J. Keinonen: Chem. Vap. Deposit. Vol. 10 (2004), p.143.

DOI: 10.1002/cvde.200306289

Google Scholar

[5] J. Aarik, J. Karlis, H. Mändar, T. Uustare, V. Sammelselg: Appl. Surf. Sci. Vol. 181 (2001), p.339.

DOI: 10.1016/s0169-4332(01)00430-5

Google Scholar

[6] A. Rahtu, K. Kukli, M. Ritala: Chem. Mater Vol. 13 (2001), p.817.

Google Scholar

[7] I. -D. Kim, H.L. Tuller, H. -S. Kim, J. -S. Park: Appl. Phys. Lett. Vol. 85 (2004), p.4705.

Google Scholar

[8] S.K. Kim. W. -D. Kim, K. -M. Kim, C.S. Hwang, J. Jeong: Appl. Phys. Lett. Vol. 85 (2004), p.4112.

Google Scholar

[9] D. Jeong, J. Lee. H. Shin, J. KIM, M. Sung: J. Korean Phys. Soc. Vol. 45 (2004), p.4705.

Google Scholar

[10] M. Rose, J. Niinist, P. Michalowski, L. Gerlich, L. Wilde, I. Endler, J. W. Bartha: J. Phys. Chem. C Vol. 113 (2009), p.21825.

Google Scholar

[11] K. Knapas, M. Ritala: Chem. Mater. Vol. 20 (2008), p.5698.

Google Scholar

[12] J. Niinistö, A. Rahtu, M. Putkonen, M. Ritala, M. Leskelä, L. Niinistö: Langmuir Vol. 21(2005), p.7321.

DOI: 10.1021/la0500732

Google Scholar

[13] M. Rose, J. Niinistö, I. Endler, J.W. Bartha, P. Kücher , M. Ritala: Appl. Mater. Interfaces Vol. 2 (2010), p.347.

Google Scholar

[14] A. Rahtu, T. Alaranta, M. Ritala: Langmuir, Vol. 17 (2001), p.6506.

Google Scholar

[15] D.N. Goldstein, J.A. McCormick, S.M. George: J. Phys. Chem. C Vol. 112 (2008), p.19530.

Google Scholar

[16] T. Aaltonen, A. Rahtu, M. Ritala, M. Leskelä: Electrochem. Solid-State Lett. Vol. 6 (2003), p. C130.

Google Scholar

[17] J. Ren, C.X. Cui, G.F. Zhou, Y.C. Liu, Y.Q. Hu, B.Z. Wang: Thin Solid Films Vol. 519 (2011), p.3716.

Google Scholar

[18] L. Jeloaica, A. Estève, M. Djafari Rouhani, D. Estève: Appl. Phys. Lett. Vol. Vol. 83 (2003), p.542.

DOI: 10.1063/1.1587261

Google Scholar

[19] A. Estève, M. Djafari Rouhani, L. Jeloaica, D. Estève: Comput. Mater. Sci. Vol. 27 (2003), p.75.

Google Scholar

[20] M.D. Halls, K. Raghavachari: J. Phys. Chem. B Vol. 108 (2004), p.4058.

Google Scholar

[21] Z. Hu, C.H. Turner: J. Am. Chem. Soc. Vol. 129 (2007), p.3863.

Google Scholar

[22] M.K. Ghosh, C.H. Choi: Chem. Phys. Lett. Vol. 457 (2008), p.69.

Google Scholar

[23] G.F. Zhou, J. Ren, S.W. Zhang: Thin Solid Films Vol. 524 (2012), p.179.

Google Scholar

[24] V.V. Brodskii, E.A. Rykova, A.A. Bagatur'yants, A.A. Korkin: Comp. Mater. Sci. Vol. 24 (2002), p.278.

Google Scholar

[25] M. Nolan, S.D. Elliott: Chem. Mater. Vol. 22 (2010), p.117.

Google Scholar

[26] A. Zydor, S.D. Elliott: J. Nanosci. Nanotechnol. Vol. 11(2011), p.8089.

Google Scholar

[27] A. Zydor, V.G. Kessler, S.D. Elliott: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.7954.

Google Scholar

[28] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian Inc., Pittsburgh PA, (2003).

Google Scholar

[29] A.D. Becke: Phys. Rev. A Vol. 38 (1988), p.3098.

Google Scholar

[30] A.D. Becke: J. Chem. Phys. Vol. 98 (1993), p.5648.

Google Scholar

[31] C. Lee, W. Yang, R.G. Parr: Phys. Rev. B Vol. 37 (1988), 785.

Google Scholar