[1]
M. Touratier: An efficient standard plate theory. Int J Eng Sci Vol. 8 (1991), p.901–916.
Google Scholar
[2]
M. Karama, K.S. Afaq and S. Mistou: Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct Vol. 40 (2003), p.1525–1546.
DOI: 10.1016/s0020-7683(02)00647-9
Google Scholar
[3]
M. Aydogdu: A new shear deformation theory for laminated composite plates. Compos Struct Vol. 89 (2009), p.94–101.
DOI: 10.1016/j.compstruct.2008.07.008
Google Scholar
[4]
J.L. Mantari, A.S. Oktem and C.G. Soares: A new higher order shear deformation theory for sandwich and composite laminated plates. Composites: Part B Vol. 43 (2012), p.1489–1499.
DOI: 10.1016/j.compositesb.2011.07.017
Google Scholar
[5]
S. Xiang and G.W. Kang: Static analysis of functionally graded plates by the various shear deformation theory. Composite Structures Vol. 99 (2013), p.224–230.
DOI: 10.1016/j.compstruct.2012.11.021
Google Scholar
[6]
S. Xiang, K.M. Wang, Y.T. Ai, Y.D. Sha and H. Shi: Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Composite Structures Vol. 91 (2009), pp.31-37.
DOI: 10.1016/j.compstruct.2009.04.029
Google Scholar
[7]
A. M. Zenkour: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch Appl Mech Vol. 77 (2007), p.197–214.
DOI: 10.1007/s00419-006-0084-y
Google Scholar