Extended Mapping Approach and Exact Solutions for a (1+1)-Dimensional Benjamin-Boma-Mahony Equation

Article Preview

Abstract:

With the help of the symbolic computation system Maple and the extended mapping approach and a linear variable separation approach, a new family of exact solutions (including the solitary wave solutions, periodic wave solutions and rational function solutions) of the (1+1)-dimensional Benjamin-Boma-Mahony (BBM) equation is derived.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1077-1079

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zheng C.L. Zhang J.F.: General solution and fractal structures for the (2+1)- Dimensional Generalized Ablowitznm-Kaup-Newell-Segur system. Chin. Phys. Lett. (2002) 19(10): 1399-1402.

DOI: 10.1088/0256-307x/19/10/301

Google Scholar

[2] Ma, Z.Y. Zheng C.L.: Two classes of fractal structures for the (2+1)-dimensional dispersive long wave system. Chin. Phys. B (2006)15(01): 0045-0052.

Google Scholar

[3] Zheng C.L. Zhang J.F.: Excit solutions and abundant coherent soliton structures of (2+1)- dimensions Ablowitznm-Kaup-Newell-Segur system. Commun Theor Phys. (2003) 39(1): 9-14.

Google Scholar

[4] Zheng, C.L. ,Chen, L.Q.: A General Mapping Approach and New Travelling Wave Solutions to (2+1)-Dimensional Boussinesq Equation[J]. Commun Theor Phys. (2004)41(5): 671-674.

DOI: 10.1088/0253-6102/41/5/671

Google Scholar

[5] Zhu H.P., Zheng C.L. Fang J.P.: Fractal and chaotic patterns of Nozhnik-Novikov- Veselov system derived from a periodic wave solution. Phys. Lett. A (2006)355(12): 39-46.

DOI: 10.1016/j.physleta.2006.01.096

Google Scholar

[6] Zheng, C.L.: Coherent soliton structures with chaotic and fractal behavious in a generalized (2+1)-dimensional korteweg de-vries system. Chinese Journal of Physics. (2002) 41(05): 442-453.

Google Scholar

[7] Zhang, J.F., Zheng, C.L.: Abundant localized coherent structures of the (2+1)-dimensions generalized Nozhnik-Novikov-Veselov systen. Chinese Journal of Physics(2003)41(3): 242-254.

Google Scholar

[8] Fang, J.P., Zheng, C.L. ,Liu, Q.: Nonpropagating soliton in (2+1)-dimensional dispersive long-water system[J]. Commun Theor Phys. (2005)43(02): 245-250.

DOI: 10.1088/0253-6102/43/2/012

Google Scholar

[9] Fang J.P., Zheng C.L. Zhu, J.M., Ren, Q.B.: New family of excit solutions and chaotic solitons of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach. Commun Theor Phys(2005)44(2): 203-208.

DOI: 10.1088/6102/44/2/203

Google Scholar

[10] Ma, S.H., Fang, J.P., Zheng, C.L.: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys B (2008) 17(08): 2767-2773.

DOI: 10.1088/1674-1056/17/8/004

Google Scholar

[11] Ma, S.H., Wu, X.H., Fang, J.P., Zheng, C.L.: Chaotic Solitons for the (2+1)-Dimensional Modified Dispersive Water-Wave System. Z. Naturforsch (2006)61a: 249-252.

DOI: 10.1515/zna-2006-5-606

Google Scholar

[12] Ma, S.H., Wu, X.H., Fang, J.P., Zheng, C.L.: New exact solutions for the (3+1)-Dimensional Jimbo-Miwa System. Chaos, Solitons and Fractals(2009) 40: 1352-1355.

DOI: 10.1016/j.chaos.2007.09.012

Google Scholar

[13] Ma, S.H., Fang, J.P., Lv, Z.J.: Folded solitary wave excitations for (2+1)-Dimensional Nozhnik-Novikov-Veselov system. Commun Theor Phys. (2009) 51(3): 479-484.

DOI: 10.1088/0253-6102/51/3/20

Google Scholar