[1]
Q.H. Wang and J.N.K. Rao: Empirical likelihood for linear models under imputation for missing responses. Canad. J. Statist. Vol. 29, pp.597-608 (2001).
DOI: 10.2307/3316009
Google Scholar
[2]
L.G. Xue: Empirical likelihood for linear models with missing responses. J. Multivariate Anal. Vol. 100, pp.1353-1366 (2009).
DOI: 10.1016/j.jmva.2008.12.009
Google Scholar
[3]
H. Liang: Generalized partially linear models with missing covariates. Journal of Multivariate Analysis. Vol. 99, pp.880-895 (2008).
DOI: 10.1016/j.jmva.2007.05.004
Google Scholar
[4]
Q.H. Wang: Statistical estimation in partial linear models with covariate data missing at random. Annals of the Institute of Statistical Mathematics. Vol. 61, pp.47-84 (2009).
DOI: 10.1007/s10463-007-0137-1
Google Scholar
[5]
H. Liang, S.J. Wang, J.M. Robbins and R.J. Carroll: Estimation in partially linear models with missing covariates. Journal of the American Statistical Association. Vol. 99, pp.357-367 (2004).
DOI: 10.1198/016214504000000421
Google Scholar
[6]
H. Wong, S.J. Guo, M. Chen and W.C. IP: On locally weighted estimation and hypothesis testing of varying coefficient models with missing covariates. Journal of Statistical Planning and Inference. Vol. 139, pp.2933-2951 (2009).
DOI: 10.1016/j.jspi.2009.01.016
Google Scholar
[7]
P.X. Zhao and L.G. Xue: Variable selection for semiparametric varying coefficient partially linear models with missing response at random. Acta Mathematica Sinica, English Series. Vol. 27, pp.2205-2216 (2011).
DOI: 10.1007/s10114-011-9200-1
Google Scholar