Effect of Annealing Treatment on Structure and Electrochemical Properties of LaNi4.5Co0.25Al0.25 Alloy with Low Co Content

Article Preview

Abstract:

The effect of annealing treatment on the structure and electrochemical properties of LaNi4.5Co0.25Al0.25 alloy was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD results show that the matrix phases are still LaNi5 (hexagonal CaCu5 type structure) but the intensity peaks become sharper after heat treatment. Electrochemical experiments at 301 K indicate that annealing treatment can significantly improve the discharge capacity and cyclic stability of LaNi4.5Co0.25Al0.25 alloy at suitable treatment condition. The alloy has the best discharge capacity (324.4 mAg-1) due to its composition homogenization after heat treatment at 1373 K/8 h, while the best capacity retention is about 80.12 % because of lower expansion rate and better anti-pulverization ability after heat treatment at 1273 K/8 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.J. Winter: I Int. J. Hydrogen Energy. Vol. 1095-1097(2004), p.35.

Google Scholar

[2] Z. M Wang, T Ben, S. L Chan and H. Y Zhou: I Int. J. Hydrogen Energy. Vol. 203-212(2010), p.35.

Google Scholar

[3] C. Y Ni, H. Y Zhou, N. L Shi and Z. M Wang: Electrochimica Acta. Vol. 234 -240(2011), p.59.

Google Scholar

[4] I Chiaki, F Kazuhiro, I Hiroshi and M Masao: Electrochim Acta. Vol. 14-15(1998), p. (2041).

Google Scholar

[5] J. W Han, F Feng, R Buxbaum and D Northwood: J Power Sources. Vol. 11-12(1999), p.45.

Google Scholar

[6] D Chartouni, K Gross, P Spatz and F Lichtenberg: J Alloys Compd. Vol. 253 (1997), p.626.

Google Scholar

[7] G Sandrock; J. Alloys Compd. Vol. 293–295 (1999), p.877.

Google Scholar

[8] M Ikoma, K Komori, S Kaida and C Iwakura; J Alloys Compound. Vol. 92(1999), p.284.

Google Scholar

[9] T. Sakai, H. Miyamura, H. Ishikawa, I. Uehara, Z. Phys. Chem. Bd. Vol. 183(1994), p.333.

Google Scholar

[10] H.G. Pan, N. Chen, M.X. Gao, R. Li, Q.D. Wang, J. Alloy. Compd. Vol. 397(2005), p.306.

Google Scholar

[11] H. Chen, Y Liu, M Gao, Y Zhu and Y Lei: Int. J. Hydrogen Energy. Vol. 113 -117(2003), p.28.

Google Scholar

[12] Y. Zhao, M.X. Gao, Y.F. Liu, L. Huang, H.G. Pan, J. Alloy. Compd. Vol. 496(2010), p.454.

Google Scholar

[13] Y Nakamura, H Nakamura and S Fujitani: J Alloys Compound. Vol. 210(1994), p.299.

Google Scholar

[14] J. X Ma, H. G Pan, C. P Chen and Q. D Wang: Int. J. Hydrogen Energy. Vol. 27(2002), p.57.

Google Scholar

[15] S. Q Shi, C. Y Ouyang, M. S Lei: Journal of Power Sources, Vol. 164(2007), p.911.

Google Scholar

[16] W Chen, Z Tang, H Guo, Z Liu, C Chen and Q Wang: J Power Sources. Vol. 74(1998), p.34.

Google Scholar

[17] C Iwakura, K Ohkawa, H Senoh and H Inoue: Electrochim Acta. Vol. 46(2001), p.4383.

Google Scholar