High Coverage ZnO Nanorods on ITO Substrates via Modified Chemical Bath Deposition (CBD) Method at Low Temperature

Article Preview

Abstract:

In the present work, ZnO nanorods array were successfully grown on ITO substrate via chemical bath deposition method (CBD). The seeding solution was prepared at low temperature (0°C) using zinc nitrate tetrahydrate and hexamethylenetetramine. The as-deposited ZnO nanorods were hexagonal wurtzite structure growing vertically on the substrate. Various reaction times from 3 to 5 hours were applied upon the CBD process at 90°C. The results showed that the duration of reaction time has affected the nanorods array properties. With the increase of reaction time from 3 to 5 hours has increased the diameter and crystallite size of nanorods from 325 to 583 nm, and from 22.68 to 34.28 nm. As a result, the band gap energy, Eg of ZnO nanorods decreased from 3.63 to 3.13 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Anh, L. Anh, T. Quang, V. Ngoc and N. Van Quy: Appl. Surf. Sci. Vol. 265 (2013), p.458.

Google Scholar

[2] R. Shabannia: Mater. Lett. Vol. 90 (2013), p.156.

Google Scholar

[3] J. Chung, J. Lee and S. Lim: Physica B Vol. 405, no. 11 (2010), p.2593.

Google Scholar

[4] G. Zhong, A. Kalam, A. S. Al-shihri, Q. Su, J. Li and G. Du: Mater. Res. Bull. Vol. 47 No. 6 (2012), p.1467.

Google Scholar

[5] J. Lang, J. Yang, C. Li, L. Yang, Q. Han, Y. Zhang, D. Wang, M. Gao and X. Liu: Cryst. Res. Technol. Vol. 43 No. 12 (2008), p.1314.

Google Scholar

[6] A. Sholehah, A. H. Yuwono and C. R. Rimbani: Mater. Sci. Forum Vol. 737 (2013), p.28.

Google Scholar

[7] K. V Gurav, U. M. Patil, S. M. Pawar, J. H. Kim and C. D. Lokhande: J. Alloys Compd. Vol. 509 No. 29 (2011), p.7723.

Google Scholar

[8] L. Z. Pei, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen and Q. Zhang: Mater. Charact. Vol. 60 No. 9 (2009), p.1063.

Google Scholar

[9] X. Wu, H. Chen, L. Gong, F. Qu and Y. Zheng: Adv. Nat. Sci.: Nanosci. Nanotechnol. Vol. 2 No. 3 (2011), p.035006.

Google Scholar

[10] S. Wei, Q. Jiang and J. Lian: Trans. Nonferrous Met. Soc. China Vol. 18 No. 5 (2008), p.1089.

Google Scholar

[11] B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Reading, Massachusetts, (1978).

Google Scholar

[12] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, (1998).

Google Scholar

[13] J. Tauc, R. Grigorovich and A. Vancu: Phys. Status Solidi Vol. 15 (1966), p.627.

Google Scholar

[14] A. H. Yuwono, G. Ramahdita and N. Sofyan: Adv. Matter. Res. Vols 557-559 (2012), p.119.

Google Scholar

[15] A.H. Yuwono, B. Liu, J. Xue, J. Wang, H.I. Elim, W. Ji, Y. Li and T.J. White: J. Mater. Chem., Vol. 14 (2004), p.2978.

Google Scholar

[16] A.H. Yuwono, N. Sofyan, I. Kartini, A. Ferdiansyah, and T.H. Pujianto: Adv. Mater. Res. Vol. 277 (2011), p.90.

Google Scholar

[17] A.H. Yuwono, A. Ferdiansyah, N. Sofyan, I. Kartini, and T.H. Pujianto: American Institute of Physics (AIP) Conference Proceedings Vol. 1415 (2011), p.159.

Google Scholar