[1]
R.D. Barnard, Thermoelectricity in Metals and Alloys, Taylor & Francis Ltd., London, 1972.
Google Scholar
[2]
F. R. Boutin, S. Demankar, B. Meyer, Thermoelectrical power: A hand for metallurgist, Aluminium-Verlag GmbH Düsseldorf, 7th Intl. Light Metals Congress, Leoben/Vienna, 1987, pp.212-213.
Google Scholar
[3]
J.M. Pelletier, R. Borrelly, Temperature and concentration dependences of thermoelectric power at high temperature in some aluminium alloys, Mater. Sci. Eng. 55 (1982) 191-202.
DOI: 10.1016/0025-5416(82)90132-x
Google Scholar
[4]
R. Borrelly, P. Merle, D. Adenis, in P.G. Campbell (Ed.), Light Metals 1989, Las Vegas, 1989, pp.703-712.
Google Scholar
[5]
V. Massardier, T. Epicier, P. Merle, Correlation between the microstructural evolution of a 6061 aluminium alloy and the evolution of its thermoelectric power, Acta Mater. 8 (2000) 2911-2924.
DOI: 10.1016/s1359-6454(00)00085-9
Google Scholar
[6]
A.Oscarsson, W.B. Hutchinson, H.-E. Ekström, D. P. E. Dickson, C.J. Simensen, G.M. Raynaud, Z. Metallkde. 79 (1988) 600-604.
Google Scholar
[7]
Z.J. Lok , Microchemistry in aluminium sheet production, Delft University of Technology, Delft, The Netherlands, 2005.
Google Scholar
[8]
O. Engler, M. Clark, L. Löchte, Z. Lok, Multi-temperature measurement of thermoelectric power for characterisation of solute levels in multi-component industrial aluminium alloys, Aluminium 1-2 (2008) 92-95.
Google Scholar
[9]
G. A. Edwards, K. Stiller, G. I. Dunlop, M. J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3898-3904.
DOI: 10.1016/s1359-6454(98)00059-7
Google Scholar
[10]
J. Buha, R.N. Lumley, A.G. Crosky, Precipitation and solute distribution in an interrupted-aged Al-Mg-Si-Cu alloy, Philos. Mag. 88, (2008) 373-390.
DOI: 10.1080/14786430701847949
Google Scholar
[11]
M. Murayama, K. Hono, Pre-Precipitate Clusters and Precipitation Processes in Al-Mg-Si Alloys, Acta Mater. 47 (1999) 1537-1548.
DOI: 10.1016/s1359-6454(99)00033-6
Google Scholar