Research on LSCMCo-CDC Composites as Improved Anode Material for IT-SOFC

Abstract:

Article Preview

La1-xSrxCr1-yMnyO3-δ(LSCM) has unique advantages over the traditional anodes for it’s stability and high catalytic activity being an anode of solid oxide fuel cell(SOFC). Doped cerium material and Co element are used to improve the conductivity both in oxidative and reductive conditions. La0.7Sr0.3Cr0.5Mn0.5-xCoxO3-δ-Ce0.8Ca0.2O2(LSCMCo-CDC) composite anode materials are synthesized in one-step by glycine nitrate process(GNP). X-ray diffraction patterns(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS) are used to characterize the powders. The conductivity of LSCMCo-CDC increases with increasing the quantity of Co when the temperature is above 750°C, and the maximum values are 10.5 Scm-1 and 0.7 Scm-1 of LSCMCo0.15-CDC at 800°C in air and H2 atmosphere, respectively. It’s conductivity in intermediate temperature have been promoted obviously comparing to that of LSCM-CDC and LSCMCo. Good chemical compatibility between LSCMCo-CDC and La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) is confirmed by XRD results.

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Edited by:

Yansheng Yin and Xin Wang

Pages:

123-126

DOI:

10.4028/www.scientific.net/AMR.79-82.123

Citation:

X. H. Chen et al., "Research on LSCMCo-CDC Composites as Improved Anode Material for IT-SOFC", Advanced Materials Research, Vols. 79-82, pp. 123-126, 2009

Online since:

August 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.