Crack Crazing Patterns Interaction Based on Damage Criteria

Article Preview

Abstract:

The present paper deals with the interactions between a main crack and a surrounding layer of crazing patterns. Analysis of the stress field distribution as well as the energy induced during these interactions is based on damage criteria through the resolution of some differential equations conditions and the use of a numerical approach. The effect of amplification and shielding on the resulting stress field is shown through a study of mode I. It is proven, herein, that crazes closer to the main crack dominate the resulting interaction effect and reflect an anti-shielding of the damage while a reduction constitutes a material toughness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

135-138

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Bevis and D. Hull: Craze distribution around cracks in polystyrene, Inter. Jour. of Mater. Sciences Vol. 5 (1970), p.983.

DOI: 10.1007/bf00558180

Google Scholar

[2] A. Chudnovsky, I. Palley and E. Baer: Thermodynamics of the quasiequilibrial growth of crazes, Inter. Jour. of Mater. Science, Vol. 16 (1981), p.35.

DOI: 10.1007/bf00552056

Google Scholar

[3] D. Post, Proceedings of Society for Experimental Stress Analysis 12, p.99 (1954).

Google Scholar

[4] J. Botsis, A. Chudnovsky and A. Moet: Fatigue crack layer propagation in polystyrene, Inter. Jour. of Fracture, Parts I and II, Vol. 33 (1987), p.263.

DOI: 10.1007/bf00044415

Google Scholar

[5] M. Chabaat: Comparison of minimal principal stress trajectories with craze distribution in an amorphous polymer, Inter. Jour. of Fracture, Vol. 37 (1988), p.47.

DOI: 10.1007/bf00032536

Google Scholar

[6] N. Tada, P. C. Paris and G. R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA (1973).

Google Scholar

[7] Chabaat M., Djouder S. and Touati M., Semi-Empirical stress analysis of a brittle material in a vicinity of a stress concentrator, Inter. Jour. of Appl. Mech. and Mater., Vol. 3-4, PP 243 - 252, (2005).

DOI: 10.4028/www.scientific.net/amm.3-4.243

Google Scholar

[8] Demailly J. P., Analyse numérique et équations différentielles, Presses Universitaires de Grenoble (1996).

Google Scholar

[20] [20] [20] [40] [40] [60] [60] [80] 80100120140 160180 -3 -2. 5 -2 -1. 5 -1 -0. 5 0. 5.

Google Scholar

[1] 1. 5.

Google Scholar

[2] 2. 5.

Google Scholar

[3] x 10 -3 500 500 500 500 1000 1000 1000 1500 1500 1500 1500 2000 2000 20002500 2500 2500 3000 3000 3500 3500 4000 -0. 5 0 0. 5 1 1. 5 2 2. 5 0. 2 0. 4 0. 6 0. 8.

DOI: 10.1163/9789004341241_005

Google Scholar

[1] 1. 2 1. 4 1. 6 1. 8.

Google Scholar

[2] x 10 -5 200 200 200 200 400 400 400 600 600 600 800 800 800 1000 1000 1000 1200 1200 1200 1400 1400 1400 1600 1600 1800 1800 2000 -3 -2. 5 -2 -1. 5 -1 -0. 5 0.

DOI: 10.2307/2004894

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 -5 200 200 400 400 600 8001000 0. 5 1 1. 5 2 2. 5 3.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 -5 Figure 4: Variation of the reduced major principal stress Σ1 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns. Figure 5: Variation of the reduced minor principal stress Σ2 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns.

DOI: 10.4028/www.scientific.net/kem.345-346.1617

Google Scholar

[20] 20.

Google Scholar

[20] [20] 20 (2020).

Google Scholar

[40] [40] 4040.

Google Scholar

[40] 40.

Google Scholar

[40] [60] 60.

Google Scholar

[60] [60] [60] [60] 60.

Google Scholar

[60] 8080 80 8080.

Google Scholar

[80] [80] [80] 80 100100 100100 100 100 100 100 100 120 120 120 120 120120 140 140 140 160 160 180 Sigma3p -3 -2. 5 -2 -1. 5 -1 -0. 5 0. 4 0. 6 0. 8.

Google Scholar

[1] 1. 2 1. 4 1. 6 1. 8.

Google Scholar

[2] x 10-5 100 100100 100 100 100 200 200200 200 200200 300 300300 300 300 300 300 400 400 400 400 400 400 400 400 400 500 500 500 500 500 500 500 600 600 600 600 600600 600 700 700 700700 700 700 800 800 800 900900 1000 1000 0. 5 1 1. 5 2 2. 5.

DOI: 10.1515/9783112460825-001

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] x 10 -7 -700000 -600000 -500000 -500000 -400000 -400000-400000 -400000 -300000 -300000 -300000-300000 -300000 -200000 -200000 -200000-200000 -200000 -200000 -200000 -100000 -100000 -100000 -100000 -100000 -100000 -100000 -100000 -100000.

DOI: 10.5474/egeologija.202203101

Google Scholar

0 -3 -2. 5 -2 -1. 5 -1 -0. 5 0.

Google Scholar

[2] [4] [6] [8] [10] [12] x 10 -6 50000 50000 50000 50000 50000 50000 5000050000 50000 50000 50000 50000 50000 100000 100000 100000 100000 100000100000 100000 150000 150000 150000 200000 200000 200000 250000 250000250000 250000 300000 300000 300000350000 350000 350000400000 0. 5 1 1. 5 2 2. 5 3 0. 5.

DOI: 10.1201/9780203998205-52

Google Scholar

[1] 1. 5.

Google Scholar

[2] 2. 5.

Google Scholar

[3] 3. 5 x 10-5 Figure 6: Variation of the reduced principal stress Σ3 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns Figure 7: Variation of the reduced maximum shear stress function relative to the applied stress. Σ12 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns. 200 200 200 200 400 400 400 600 600 800 800 1000 1000 12001400 16001800 -3 -2. 5 -2 -1. 5 -1 -0. 5 0.

DOI: 10.4028/www.scientific.net/kem.345-346.1617

Google Scholar

[1] [2] [3] [4] [5] [6] [7] x 10 -6 500 500 500 500 1000 1000 1000 10001000 1500 1500 1500 2000 20002500 0. 5 1 1. 5 2 2. 5 3.

DOI: 10.1017/9781108863612.006

Google Scholar

[2] [4] [6] [8] [10] [12] [14] [16] x 10 -7.

Google Scholar

[50] [50] 50 100 150 200 250 -3 -2. 5 -2 -1. 5 -1 -0. 5 0 0. 5.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 -5 1000 1000 1000 2000 2000 2000 2000 3000 3000 3000 4000 4000 4000 5000 5000 5000 6000 6000 7000 7000 8000 0. 5 1 1. 5 2 2. 5 3.

DOI: 10.31003/uspnf_r5970_01_01

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 -8 Figure 8: Variation of the reduced maximum shear stress function relative to the applied stress. Σ13 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns. Figure 9: Variation of the reduced maximum shear stress function relative to the applied stress. Σ23 for r ∈ V(0) function of the orientation of the crazing patterns θ and the position of crazing patterns. r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad) r (mm) θ (rad).

DOI: 10.1615/telecomradeng.v63.i2.40

Google Scholar