Atomic and Electronic Structure of LaAlO3 and LaAlO3:Mg from First-Principles Calculations

Article Preview

Abstract:

In the present paper, the lattice structure, band structure and density of state of LaAlO3 and LaAlO3:Mg are calculated by first-principle method based on density functional theory. Firstly, we select the different cutoff energy and k-point grid in the calculations, and obtain the most stable geometry structure of single crystal LaAlO3. The calculated lattice parameters are a=b=5.441 Å, c=13.266 Å, which matches with experimental values. To deeply understand the electronic structure of LaAlO3, a 2×1×1 super-cell structure is established and the doping concentration of Mg at Al sites is 25%. From the band structure and density of states, it can be seen that LaAlO3 has a direct band gap Eg=3.6 eV. However, LaAlO3:Mg has a larger band gap Eg=3.89 eV and the Fermi level enters into the valence band, which indicates the holes are introduced. The calculated results show that the conductivity of LaAlO3:Mg is better than pure LaAlO3, which is in good agreement with experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

1257-1260

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.Y. Xu, X.K. Zhang, D. P Fan and D.M. Jiang: Acta Phys. Sin. Vol. 42 (1993), p.72.

Google Scholar

[2] Y.D. Yu and S.S. Xie: Acta. Phys. Sin. Vol. 42 (1993), p.605.

Google Scholar

[3] S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf and G. Lucovsky: J. Appl. Phys. Vol. 91 (2002), p.4500.

DOI: 10.1063/1.1456246

Google Scholar

[4] L.F. Edge, D G. Schlom, S.A. Chambers, E. Cicerrella, J.L. Freeouf, B. Hollander and J. Schubert: Appl. Phys. Lett. Vol. 84 (2004), p.726.

DOI: 10.1063/1.1644055

Google Scholar

[5] Y.Y. Mi, Z. Yu, S.J. Wang, P.C. Lim, Y.L. Foo, A.C. H. Huan and C.K. Ong: Appl. Phys Lett. Vol. Vol. 90 (2007), p.181925.

Google Scholar

[6] W.F. Xiang, H.B. Lü, L. Yan, H.Z. Guo, L.F. Liu, Y.L. Zhou, G.Z. Yang, J.C. Jiang, H.S. Cheng and Z.H. Chen: J. Appl. Phys. Vol. 93 (2003), p.533.

Google Scholar

[7] D.O. Klenov, D.G. Schlom, H. Li and S. Stemmer: Jpn. J. Appl. Phys. Part 2 Vol. 44 (2005), p. L617.

Google Scholar

[8] W. Cochran: Phys. Status Solidi. Vol. 25 (1968), p.273.

Google Scholar

[9] K.A. Müller, W. Berlinger and F. Waldner: Phys. Rev. Lett. Vol. 21 (1968), p.814.

Google Scholar

[10] J.F. Scott: Phys. Rev. Vol. 183 (1969), p.823.

Google Scholar

[11] C.J. Howard, B.J. Kennedy and B.C. Chakoumakos: J. Phys.: Condens. Matter. Vol. 12 (2000), p.349.

Google Scholar

[12] X. Luo and B. Wang: Journal of Appled Physics. Vol. 104 (2008), p.053503.

Google Scholar

[13] J. Xing: The Chinese Journal of Nonferrous Metals. Vol. 1004 (2006), p.0609.

Google Scholar

[14] T.Y. Chen, R.Y. Pan, K.Z. Fung: Journal of Physics and Chemistry of Solids. Vol. 69 (2008), p.540 Fig. 7 The partial density of states of LaAlO3: Mg (a) Mg; (b) La; (c) Al; (d) O Fig. 6 Total density of states (a) LaAlO3; (b) LaAlO3: Mg.

DOI: 10.1016/j.jpcs.2007.07.039

Google Scholar