First-Principles Study on the Conductive Properties of P-Doped ZnO

Article Preview

Abstract:

In the present paper, the lattice structure, band structure and density of state of pure and P-doped ZnO are calculated by first-principle method based on density functional theory. By analyzing the Mulliken charge overlap population and bond length, it is found that the bond of P-Zn is longer and stronger than O-Zn bond for PO-ZnO. But for PZn-ZnO, the O-P bond becomes shorter and more powerful than O-Zn bond. Also, weak O-O bonds are formed in this case. Our results show that the final total energy of PO-ZnO is lower than PZn-ZnO. The lattice structure of PO-ZnO is more stability than PZn-ZnO. For PO-ZnO, The Fermi level moves into the valence band, which expresses that the holes appear on the top of valence band and thus the PO-ZnO exhibits p-type conductivity. For PZn-ZnO, the Fermi level moves up to the conductor band and the total density of states shifts to the lower energy region, thus PZn-ZnO shows the n-type conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

1253-1256

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.K. Tang, G.K.L. Wong and P. Yu: Appl. Phys. Lett. Vol. 72 (1998), p.3270.

Google Scholar

[2] J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He and B.H. Zhao: J. Appl. Phys. Vol. 101 (2007), p.083705.

DOI: 10.1063/1.2721374

Google Scholar

[3] X. Jiang, F.L. Wong, M.K. Fung and S.T. Lee: Appl. Phys. Lett. Vol. 83 (2003), p.1875.

Google Scholar

[4] W. Wilhelmsen and T. Hurlen: J. Electrochim Act. Vol. 32 (1987), p.85.

Google Scholar

[5] M. Shikanai, M. sakairi, H. Takahashi and M.J. Seo: J. Electrochem Soc. Vol. 144 (1997), p.2756.

Google Scholar

[6] A.F. Kohan, G. Ceder and D. Morgan: Phys. Rev. B. Vol. 61(2000), p.15019.

Google Scholar

[7] J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng B.H. Zhao and L.P. Zhu: Appl. Phys. Lett. Vol. 85 (2004), p.3134.

Google Scholar

[8] M. Kumar, T.H. Kim, S.S. Kim and B.T. Lee: Appl. Phys. Lett. Vol. 89 (2006), p.112103.

Google Scholar

[9] A. Allenic, X.Q. Pan, Y. Che, Z.D. Hu and B. Liu: Appl. Phys. Lett. Vol. 92 (2008), p.022107.

Google Scholar

[10] S. Limpijumnong, M.F. Smith and S.B. Zhang: Appl. Phys. Lett. Vol. 89 (2006), p.222113.

Google Scholar

[11] L.J. Mandalapu, Z. Yang, S. Chu and L. Liu: Appl. Phys. Lett. Vol. 92 (2008), p.122101.

Google Scholar

[12] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason and G. Cantwell: Appl. Phys. Lett. Vol. 81 (2002), p.1830.

Google Scholar

[13] A.V. Singh and R.M. Mehra: J. Appl. Phys. Vol. 93 (2003), p.396.

Google Scholar

[14] T.M. Barnes, K. Olson and C.A. Wolden: Appl. Phys. Lett. Vol. 86 (2005), p.112112.

Google Scholar

[15] Z.G. Yu, P. Wu and H. Gong: Appl. Phys. Lett. Vol. 88 (2006), p.132114.

Google Scholar

[16] F.X. Xiu, Z. Yang, L.J. Mandalapu and J.L. Liu: Appl. Phys. Lett. Vol. 88 (2006), p.152116.

Google Scholar

[17] J.P. Perdew, K. Burke. M. Ernzerhof: Phys. Rev. Lett. Vol. 77(1996), p.3865.

Google Scholar

[18] X.D. Zhang, M.L. Guo, W.X. Li and C.L. Liu: J. Appl. Phys. Vol. 103 (2008), p.063721.

Google Scholar

[19] G.X. Hu, H. Gong, E.F. Chor and P. Wu: Appl. Phys. Lett. Vol. 89 (2006), p.251102.

Google Scholar