The Preparation of Ti-6Al-4V Alloy Rod and Blade by Metal Mold Suction Casting and the Effects of Hydrogen on Them

Article Preview

Abstract:

In the article this is a new way to prepare Ti-6Al-4V alloy rod and blade by metal mold vacuum suction casting. The effects of hydrogen on the suction casting is also studied. It is found that the alloy melt can be sucked up easily by the mold and has a better fluidity because of H2. Hydrogen can make the electrical current for suction casting decrease sharply compared with the electrical current in Ar. Hydrogen can refine the grain size of the alloy rod and blade. Compared with the unhydrogenated specimen, the peak stress of the hydrogenated specimens increase about 20%, because hydrogen decreases the volume fraction and size of shrinkage porosity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

1659-1662

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dong, T. Bell. Wear Vol. 238 (2000), p.131.

Google Scholar

[2] H. Guleryuz, H. Cimenoglu. J. Alloys. Compd Vol. 472(2009), p.241.

Google Scholar

[3] K. Suardi, E. Hamzah, A. Ourdjini, V.C. Venkatesh. J. Mater. Process. Technol Vol. 185(2007), p.106.

Google Scholar

[4] T. I. Wu, J. K. Wu. Mater. Chem. Phys Vol. 74(2002), p.5.

Google Scholar

[5] I. Weiss, S.L. Semiatin, Mater. Sci. Eng. A 263 Vol. (2000), p.243.

Google Scholar

[6] V. G. Krishna, P.V.R.K. Prasad, N.C. Birla, G. Sambasiva Rao. J. Mater. Process. Technol Vol. 71 (1997), p.377.

Google Scholar

[7] T. Rajajopalachary, V.V. Kutumbarao. Scripta. Mater Vol. 35(1996), p.305.

Google Scholar

[8] P. Vo, M. Jahazi, S. Yue, P. Bocher. Mater. Sci. Eng. A Vol. 447(2007), p.99.

Google Scholar

[9] Y. Niu, H.L. Hou, M.Q. Li, Z.Q. Li. Mater. Sci. Eng. A Vol. 492(2008), p.24.

Google Scholar

[10] S. Z. Kou, W. Yue, Y. T. Ding, G.J. Xu. J. Lanzhou. University. Technol Vol. 32(2006), p.1.

Google Scholar

[11] W. R. Chen, Y. M. Wang, J. B. Qiang, C. Dong. Hot. Working. technol Vol. 6(2001), p.25.

Google Scholar

[12] S. Z. Kou, W. Yue, Y. T. Ding, G.J. Xu. Sci. Technol. Eng Vol. 6(2006), p.302.

Google Scholar

[13] F. H. Froes, O. N. Senkov, J. I. Qazi. Int. Mater . Rev Vol. 49(2004), p.227.

Google Scholar

[14] J. I. Qazi, O. N. Senkov, J. Rahim, A. Genc and F. H. Froes. Mater. Trans. A Vol. 32A(2001), p.2453.

Google Scholar

[15] C. T. Liu, T. I. Wu, J. K . Wua. Mater. Chem. Phys Vol. 110(2008), p.440.

Google Scholar

[16] A. A. Ilyin, I. S. Polkin, A. M. Moamonov, et al. Titanium 95: Sci Technol [C]. (1996), p.2462.

Google Scholar

[17] V.A. Goltsov. J. Alloys Compd Vol. 293-295 (1999), p.844 T=1073K 2 1 10 sε − − =.

Google Scholar