Degradation of MTBE by Using a Novel Magnetic Composite TiO2/Fe3O4 Photoreactor Design

Article Preview

Abstract:

Methyl tert-butyl ether (MTBE) is the most prevalent contaminant found in soil and groundwater and classified as a suspect carcinogen by Environmental Protection Agency (USEPA). Due to high water solubility, MTBE is not easy to be removed from contaminated groundwater. This study aimed to develop a novel and simple method to coat TiO2 photocatalyst on magnetic particles, evaluate its photocatalytic degradation effect on MTBE irradiated under visible (λ= 419 nm), and recollect easily from hydroponic systems with magnet. Iron nanoparticles are synthesized and added to TiO2 sol-gel followed by 500 oC calcinations. The results showed that the novel magnetic composite TiO2/Fe3O4 had significantly efficiency of photocatalytic degradation (91.6 %) for 10 ppm of MTBE under visible light irradiation and the recovery rate was relatively high as we recollected easily from recycled water using magnet.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

321-324

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Axelsson, L.J. Dunnea, J. Photochem. & Photobio. A: Chem. 144 (2001) 205.

Google Scholar

[2] S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia, E. Papaconstantinou, J. Photochem. & Photobio. A: Chem. 148 (2002) 191.

Google Scholar

[3] I. Ilisz, D. András, M. Károly, F. András, D. Imre, Appli. Cat. B: Environ. 39 (2002) 247.

Google Scholar

[4] M. Anpo, Y. Ichihashi, M. Takeuchi, H. Yamashita, Res. Chem. Intermediates 24 (42) (1998) 143.

Google Scholar

[5] G. Zhao, H. Kozuka, H. Lin, T. Yoko, Thin Solid Films 339 (1999) 123.

Google Scholar

[6] W. Choi, A. Termin, M. Hoffmann, J. Phys. Chem. 98 (1994) 13669.

Google Scholar

[7] S. Klosek, D. Raffery, J. Phys. Chem. B 105 (2001) 2815.

Google Scholar

[8] J. Lee, T. Isobe, M.P. Senna, J. Colloid. Interface Sci. 177 (1996) 490.

Google Scholar

[9] J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, J. Nature Med. 13 (2007) 95.

Google Scholar

[10] C.W. Lu, Y. Hwang, J.K. Hsiao, M. Yao, T.H. Chung, Y.S. Lin, S.H. Wu, S.C. Hsu, H.M. Liu, C.Y. Mou, C.S. Yang, D.M. Huang, Y.C. Chen, Nano. Lett. 7 (2007) 149.

Google Scholar

[11] M. Arruebo, W.Y. Ho, J. Arbiol, J. Santamaría, K.L. Yeung, Chem. Mater., 20 (2008) 486.

Google Scholar

[12] U.J. Hong, M. Sc. Thesis, National Chung Hsing University, Taiwan, (2006).

Google Scholar

[13] R.A. Doong, C.H. Chen, R.A. Maithreepala and S.M. Chang, Wat. Res., 35 (2001) 2873.

Google Scholar

[14] Z. Parisheva and A. Demirev, Wat. Res., 34 (2000).

Google Scholar