Global Stability of a HBV Infection Model with Saturated Infection Rates and Time Delay

Article Preview

Abstract:

This paper investigates the global stability of a viral infection model of HBV infection of hepatocytes with saturated infection rate and intracellular delay. we obtain if the basic reproductive number is less than or equal to one, the infection-free equilibrium is globally asymptotically stable. If its greater than one, we obtain the sufficient conditions for the global stability of the infected equilibrium.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

1314-1317

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Bartholdy, J. P. Christensen, D. Wodarz, A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic chrori-omeningitis virus, J. Virol. 74 (2000).

DOI: 10.1128/jvi.74.22.10304-10311.2000

Google Scholar

[2] S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.

DOI: 10.1073/pnas.94.13.6971

Google Scholar

[3] A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May, M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.

DOI: 10.1073/pnas.93.14.7247

Google Scholar

[4] A. Korobeinikov, Global properties of basic virus dynamics models, Bulletin of Mathematical Biology, 66 (2004), 879-883.

DOI: 10.1016/j.bulm.2004.02.001

Google Scholar

[5] W. M. Liu, Nonlinear oscillations in models of immune responses to persistent viruses, Theoretical Population Biology , 52 (1997), 224-230.

DOI: 10.1006/tpbi.1997.1334

Google Scholar

[6] Cruz Vargas-De-Leon, Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, Applied Mathematics and Computation, 219 (2012), 389-398.

DOI: 10.1016/j.amc.2012.06.029

Google Scholar

[7] Xinyu Song, Avidan U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281-297.

Google Scholar