Global Dynamics of a HIV Infection Model with Delayed CTL Response and Cure Rate

Article Preview

Abstract:

In this paper, we have considered a viral infection model with delayed CTL response and cure rate. For this model, we have researched the stability of these three equilibriums depend on two threshold parameters and , that is, if , the infected-free equilibrium is locally asymptotically stable; if , the infected equilibrium without CTL response is globally asymptotically stable; and if , the infected equilibrium exists, at he same time, we have found that the time delay can lead to Hopf bifurcations and stable periodic solutions when the is unstable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

1322-1327

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.S. Perelson, Modeling viral and immune system dynamics, Nature Rev. Immunol. 2 (2002) 28-36.

Google Scholar

[2] A .M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. RWA 11 (2010) 2253-2263.

Google Scholar

[3] I.T. Vieira, R.C.H. Cheng, et al., Small world network models of the dynamics of HIV infection, Ann. Oper. Res. 178(2010)173-200.

DOI: 10.1007/s10479-009-0571-y

Google Scholar

[4] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41(1999)3-44.

Google Scholar

[5] R.J. De Boer, A. S. Perelson, Target cell limited and immune control models of HIV infection: a comparison, J. Theoret. Biol. 190(1998)201-214.

DOI: 10.1006/jtbi.1997.0548

Google Scholar

[6] K. Wang, A. Fan, et al., Global properties of an improved hepatitis B virus model, Nonlinear Anal. RWA 11(2010)3131-3138.

Google Scholar

[7] Y. Yu, J.J. Nieto, et al., A viral infection model with a nonlinear infection rate, Bound. Value Probl. 2009(2009)16-19.

Google Scholar

[8] J.D. Murray, Mathematical Biology, Springer, Berlin, Heidelberg, (1993).

Google Scholar

[9] N. MacDonald, Biological Delay Systems, Cambridge University Press, Cambridge, (1989).

Google Scholar

[10] S. Bonhoeffer, R.M. May, G.M. Shaw, M.A. Nowak, Virus Dynamics and Drug Therapy, Proc, Natl. Acad. Sci. USA 94(1997)6971-6976.

DOI: 10.1073/pnas.94.13.6971

Google Scholar

[11] R.J. De Boer, A.S. Perelson, Towards a general function describing T cell proliferation, J. Theoret, Biol. 175(1995)567-576.

DOI: 10.1006/jtbi.1995.0165

Google Scholar

[12] K.L. Cooke, P. van den Driessche, On zeros of some transcendental equations, Funkical. Ekvac. 29(1986)77-90.

Google Scholar

[13] Bruno Buonmo, Cruz Vargas-De-Leon, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Appl. 385(2012)709-720.

DOI: 10.1016/j.jmaa.2011.07.006

Google Scholar

[14] Cruz Vargas-De-Leon, Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, Applied Mathematics and computation 489(2012)57-68.

DOI: 10.1016/j.amc.2012.06.029

Google Scholar

[15] Hassard BD, Kazarinoff ND, Wan YH, Theory and applications of Hopf bifurcation. Cambridage: Cambridge University Press; (1981).

Google Scholar