[1]
A.S. Perelson, Modeling viral and immune system dynamics, Nature Rev. Immunol. 2 (2002) 28-36.
Google Scholar
[2]
A .M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. RWA 11 (2010) 2253-2263.
Google Scholar
[3]
I.T. Vieira, R.C.H. Cheng, et al., Small world network models of the dynamics of HIV infection, Ann. Oper. Res. 178(2010)173-200.
DOI: 10.1007/s10479-009-0571-y
Google Scholar
[4]
A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41(1999)3-44.
Google Scholar
[5]
R.J. De Boer, A. S. Perelson, Target cell limited and immune control models of HIV infection: a comparison, J. Theoret. Biol. 190(1998)201-214.
DOI: 10.1006/jtbi.1997.0548
Google Scholar
[6]
K. Wang, A. Fan, et al., Global properties of an improved hepatitis B virus model, Nonlinear Anal. RWA 11(2010)3131-3138.
Google Scholar
[7]
Y. Yu, J.J. Nieto, et al., A viral infection model with a nonlinear infection rate, Bound. Value Probl. 2009(2009)16-19.
Google Scholar
[8]
J.D. Murray, Mathematical Biology, Springer, Berlin, Heidelberg, (1993).
Google Scholar
[9]
N. MacDonald, Biological Delay Systems, Cambridge University Press, Cambridge, (1989).
Google Scholar
[10]
S. Bonhoeffer, R.M. May, G.M. Shaw, M.A. Nowak, Virus Dynamics and Drug Therapy, Proc, Natl. Acad. Sci. USA 94(1997)6971-6976.
DOI: 10.1073/pnas.94.13.6971
Google Scholar
[11]
R.J. De Boer, A.S. Perelson, Towards a general function describing T cell proliferation, J. Theoret, Biol. 175(1995)567-576.
DOI: 10.1006/jtbi.1995.0165
Google Scholar
[12]
K.L. Cooke, P. van den Driessche, On zeros of some transcendental equations, Funkical. Ekvac. 29(1986)77-90.
Google Scholar
[13]
Bruno Buonmo, Cruz Vargas-De-Leon, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Appl. 385(2012)709-720.
DOI: 10.1016/j.jmaa.2011.07.006
Google Scholar
[14]
Cruz Vargas-De-Leon, Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, Applied Mathematics and computation 489(2012)57-68.
DOI: 10.1016/j.amc.2012.06.029
Google Scholar
[15]
Hassard BD, Kazarinoff ND, Wan YH, Theory and applications of Hopf bifurcation. Cambridage: Cambridge University Press; (1981).
Google Scholar