Investigation of Pure-Lateral-Field-Excitation Bulk Acoustic Wave Sensor with Different Electrodes on (yxl)89° LiNbO3 Single Crystal

Article Preview

Abstract:

Lateral field excitation (LFE) acoustic wave devices, which employ two electrodes on the same surface of a piezoelectric substrate, have been found attractive in sensing applications. However, up to now, the sensitivities of pure-LFE devices based on LiNbO3 single crystal is unknown. In this work, the effective LFE exciting electric field direction of (yxl)89° LiNbO3 is determined. The calculated results showed that when the driving electric field direction is perpendicular to the crystallographic X-axis of the piezoelectric substrate, (yxl)89° LiNbO3 LFE device works on pure-LFE mode. Based on this, several LiNbO3 pure-LFE bulk acoustic wave sensors with three different electrodes are designed and fabricated. The results show that the (yxl)89° LiNbO3 LFE sensor with interdigital electrodes is 11.1 times and 2.2 times more sensitive to changes in liquid conductivity compared to traditional LFE devices with single gap circular electrodes and Archimedes spiral electrodes, respectively. The results are important for investigating high-sensitivity LFE bulk acoustic wave sensors by using LiNbO3 single crystal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

545-549

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. H. Hu, L. A. French Jr., K. Radecsky, M. Pereira da Cunha, P. Millard and J.F. Vetelino: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. Vol. 51 (2004), p.1373.

DOI: 10.1109/tuffc.2004.1367475

Google Scholar

[2] E. P. EerNisse, D. Puccio, R. Lucklum and U. Hempe: Proc. IEEE International Frequency Control Symp. (Honolulu, HI, May 19-21, 2008) Vol. 1, p.31.

Google Scholar

[3] W. Y. Wang, C. Zhang, Z. T. Zhang, Y. Liu and G. P. Feng: Appl. Phys. Lett. Vol. 93 (2008), p.242906.

Google Scholar

[4] W. Y. Wang, C. Zhang, Z. T. Zhang, Y. Liu, G. P. Feng: Proc. IEEE International Ultrasonics Symp. (Beijing, China, November 2-5, 2008), p.276.

Google Scholar

[5] R. W. White and F. W. Voltmer: Appl. Phys. Lett. Vol. 7 (1965), p.314.

Google Scholar

[6] H. Matthews: Surface wave filters: Design, construction, and use (Wiley-Interscience, New York, 1977), p.521.

Google Scholar

[7] R. S. C. Monkhouse, P. D. Wilcox and P. Cawley: Ultrasonics Vol. 35 (1997), p.489.

Google Scholar

[8] A. K. Sarin Kumar: Appl. Phys. Lett. Vol. 85 (2004), p.1757.

Google Scholar

[9] K. Nakamura: Electronics Letters. Vol. 23 (1987), p.74.

Google Scholar

[10] A. Ballato: Proc. IEEE International Frequency Control Symp. (Kansas City, Missouri, June 7-9, 2000), p.284.

Google Scholar

[11] J. F. Rosenbaum: Bulk Acoustic Wave Theory and Devices(Artech House, Boston, 1988), p.141.

Google Scholar

[12] Y. Gao, G. Yang, H. Wang, J. Wang, and S. Chen: J. Biomed. Eng. Vol. 22 (2005), p.548.

Google Scholar