Fabrication of High-Strength Aligned Multi-Walled Carbon Nanotubes/ Polyvinyl Alcohol Composite Nanofibers by Electrospinning

Article Preview

Abstract:

High-strength uniaxially-aligned electrospun nanofibers were prepared from PVA reinforced by modified hydrophilic multi-walled carbon nanotubes (MWCNTs). In order to get a homogeneous spinning solution, a one-step process using ammonium persulfate (APS) as oxidant was employed to fabricate water-soluble MWCNTs, and then they were dispersed in a 10 wt% PVA aqueous solution. We utilized this macroscopically homogeneous dispersion to produce nanofibers mat by electrospinning with an ultra-high-speed rotating cylinder as a collector. SEM image shows that the aligned degree of the fibers increases along with the increase in rotating speed. When the speed is up to 2000 rpm, the electrospun nanofibers are nearly uniaxially aligned. The tensile test results suggest that a small amount of MWCNTs dramatically enhanced the tensile strength of PVA fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-316

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Tan, R. Inai, M. Kotaki, S. Ramakrishna: Polymer. 46 (2005) 6128.

Google Scholar

[2] K. H. Lee, O. Ohsawa, and S. Lee, et al: Sen'i Gakkaishi. 64 (2008) 306.

Google Scholar

[3] J. H. Park, B. S. Kim, and Y. C. Yoo, et al: J. Appl. Polym. Sci. 107 (2007) 2211.

Google Scholar

[4] J. Doshi, D. H. Reneker: J. Electrostat. 35 (1995) 151.

Google Scholar

[5] K. Wei, T. Ohta, B. S. Kim and K. H. Lee, et al: Polym. Adv. Technol. 21 (2010) 746.

Google Scholar

[6] J. M. Deitzel, J. Kleinmeyer and D. Harris, et al: Polymer. 42 (2001) 261.

Google Scholar

[7] C. Chen, Y. H. Zhu and H. Bao, et al: Appl Mater Interfaces. 2 (2010) 1499.

Google Scholar

[8] B. E. B. Jensen, A. A. A. Smith and B. Fejerskov, et al: Langmuir. 27 (2011) 10216.

Google Scholar

[9] A. D. Ossipov, J. Hilborn: Macromolecules. 39 (2006) 1709.

Google Scholar

[10] A. D. Ossipov, S. Piskounova and J. Hilborn: Macromolecules. 41 (2008) 3971.

Google Scholar

[11] F. Cavalieri, E. Chiessi and R. Villa, et al: Biomacromolecules. 9 (2008) (1967).

Google Scholar

[12] A. Bornat, US Patent 4689186. (1987).

Google Scholar

[13] J. P . Berry , US Patent 4965110. (1990).

Google Scholar

[14] A. Theron, E. Zussman, and A. L. Y arin: Nanotechnology. 12 (2001) 384.

Google Scholar

[15] R. Dersch, T. Liu and A. K. Schaper, et al: J. Polym. Sci. -A: Polym. Chem. 41(2003) 545.

Google Scholar

[16] J. M. Deitzel, J. Kleinme yer and J. K. Hirv onen, et al: Polymer. 42 (2001). 8163.

Google Scholar

[17] K. Nobusawa, A. Ikeda and J. Kikuchi, et al: Chem. Int. Ed. 47 (2008) 4577.

Google Scholar

[18] C. Hu, Z. Chen and A. Shen, et al: Carbon. 44 (2006) 428.

Google Scholar

[19] F. Liang, J. M. Beach and P. K. Rai, et al: Chem. Mater. 18 (2006) 1520.

Google Scholar

[20] J. L. Hudson, H. Jian and A. D. Leonard, et al: Chem. Mater. 18 (2006) 2766.

Google Scholar

[21] J. J. Stephenson, J. L. Hudson and S. Azad, et al: Chem. Mater. 18 (2006) 374.

Google Scholar

[22] J. Chattopadhyay, F. J. Cortez and S. Chakraborty, et al: Chem. Mater. 18 (2006) 5864.

Google Scholar

[23] B. Jia, L. Gao: J. Phys. Chem. B. 111 (2007) 5337.

Google Scholar

[24] M. N. Tchoul, W. T. Ford and G. lolli, et al: Chem. Mater. 19 (2007) 5765.

Google Scholar

[25] A. G. Osorio, I. C. L. Silveira and V. L. Bueno, et al: Appl. Surf. Sci. 255 (2008) 2485.

Google Scholar

[26] L. Zhang, Q. Q. Ni and Y. Q. Fu, et al: App. Surf. Sci. 255 (2009) 7095.

Google Scholar

[27] J. Zou, L. Liu and H. Chen, et al: Adv. Mater. 20 (2008) (2055).

Google Scholar