Surface Integrity - an Inherent Load Sensor

Article Preview

Abstract:

The presented approach evaluates the application of the surface integrity of machined components as load sensors. Residual stress relaxation due to mechanical load is utilized to retrieve information on the load history of a component. The critical load stress, the sensitivity and the relaxation gradient are quantified and analyzed for AISI 1060 steel. More specifically, the influence of heat treatment and therefore of the materials ultimate strength has been evaluated. The results show that the knowledge on the error determining the residual stress is crucial for the accuracy of the approach. Furthermore, a sufficient relaxation gradient has to be provided by low residual stress sensitivity and high initial residual stress magnitude. Both properties can be influenced by heat treatment and machining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

679-684

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Javidi, U. Rieger, W. Eichlseder, The effect of machining on the surface integrity and fatigue life. International Journal of Fatigue, 30, pp.2050-2055 (2008).

DOI: 10.1016/j.ijfatigue.2008.01.005

Google Scholar

[2] R. M'Saoubi, J. C. Outeiro, H. Chandrasekaran, O. W. Dillon Jr., I. S. Jawahir, A review of surface integrity in machining and its impact on functional performance and life of machined products. IJSM 1(1-2), pp.203-236 (2008).

DOI: 10.1504/ijsm.2008.019234

Google Scholar

[3] U. Wolfstieg, E. Macherauch, Ursachen und Bewertung von Eigenspannungen, Chemie Ing. Techn., 45(11), pp.760-770 (1973).

DOI: 10.1002/cite.330451103

Google Scholar

[4] M. Field, J. F. Kahles, The surface integrity of machined and ground high strength steels. DMIC Report, 210, pp.54-77 (1964).

Google Scholar

[5] E. Brinksmeier, J. T. Cammett, W. König, P. Leskovar, J. Peters, H. -K. Tönshoff, Residual stresses - Measurement and causes in machining processes. Annals of the CIRP, 31(2), pp.491-510 (1982).

DOI: 10.1016/s0007-8506(07)60172-3

Google Scholar

[6] I. S. Jawahir, E. Brinksmeier, R. M'Saoubi, D. K. Aspinwall, J. C. Outeiro, D. Meyer, D. Umbrello, A. D. Jayal, Surface integrity in material removal processes: Recent advances. CIRP Annals - Manufacturing Technology, 60(2), pp.603-626 (2011).

DOI: 10.1016/j.cirp.2011.05.002

Google Scholar

[7] J. Hoffmeister, Beschreibung des Eigenspannungsabbaus in kugelgestrahltem Inconel 718 bei thermischer, quasistatischer und zyklischer Beanspruchung, Dr. -Ing. Thesis, Universität Karlsruhe (2010).

Google Scholar

[8] B. Scholtes, Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen, Ursachen-Ermittlung-Bewertung, DGM-Informationsgesellschaft, Oberursel (1990).

DOI: 10.1002/mawe.19910221203

Google Scholar

[9] E. Macherauch, H. Wohlfahrt, Eigenspannungen und Ermüdung, in: Ermüdungsverhalten metallischer Werkstoffe, DGM-Informationsgesellschaft Verlag, pp.237-283 (1985).

Google Scholar

[10] V. Schulze, Modern mechanical surface treatment. States, stability, effects, Wiley-Verlag, Weinheim (2006).

Google Scholar

[11] B. Denkena, J. Köhler, J., B. Breidenstein, T. Mörke, Elementary studies on the inducement and relaxation of residual stress, Procedia Engineering, 19, pp.88-93 (2011).

DOI: 10.1016/j.proeng.2011.11.084

Google Scholar

[12] Norm: DIN 50113, Prüfung metallischer Werkstoffe, Umlaufbiegeversuch, Beuth-Verlag, Berlin (1982).

DOI: 10.31030/2874331

Google Scholar

[13] E. Macherauch, P. Müller, Das sin2y-Verfahren der röntgenographischen Spannungsmessung. Zeitschrift für Angewandte Physik, 13(7), pp.305-312 (1961).

Google Scholar

[14] E. Brinksmeier, State of the Art Non Destructive Measurement of Subsurface Material Properties and Damages, Precision Engineering, 11, pp.211-224 (1989).

DOI: 10.1016/0141-6359(89)90031-7

Google Scholar

[15] J. D. Morrow, G. M. Sinclair, Cycle dependent stress relaxation, Symp. basic mechanisms of fatigue, ASTM STP, 237, pp.83-109 (1959).

DOI: 10.1520/stp39312s

Google Scholar