[1]
E Ott, C Grebogi, JA Yorke . Controlling chaos , Phys Rev Lett, Vol. 64, 1990, pp.1196-1199.
DOI: 10.1103/physrevlett.64.1196
Google Scholar
[2]
JH Park, OM Kwon, A Novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitions & Fractals, Vol. 17, 2003, pp.709-716.
DOI: 10.1016/j.chaos.2004.05.023
Google Scholar
[3]
EN Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci, Vol. 20, 1963, pp.130-141.
Google Scholar
[4]
OE Rossler, An equation for continuous chaos, Phys. Lett. A, Vol. 57, 1967, pp.387-398.
Google Scholar
[5]
GR Chen, T Ueta, Yet another chaotic attractor, Int.J. Bifurcation chaos, Vol. 9, 1999, pp.1456-1466.
DOI: 10.1142/s0218127499001024
Google Scholar
[6]
H Fujisaka, T Yamada, Stability Theory of Synchronization Motion in Coupled-oscillator Systems, Prog Theor Phys. Vol. 69 (1983), pp.32-71.
Google Scholar
[7]
LM Pecora, TL Carroll, Synchronization in Chaotic Systems, Phys Rev Lett. Vol. 64 (1990), pp.821-824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[8]
JH Lü, GR Chen, DZ cheng, Bridge the Gap Between the Lorenz System and the Chen System, Int. J of Bifurcation and Chaos. Vol. 12 (2002), pp.2917-2926.
DOI: 10.1142/s021812740200631x
Google Scholar
[9]
EM Elabbasy, HN Agiza, MM EI-Dessoky, Adaptive Synchronization of a Hyperchaotic System with Uncertain Parameter, Chaos, Solitons and Fractals. Vol. 30 (2006), pp.1133-1142.
DOI: 10.1016/j.chaos.2005.09.047
Google Scholar
[10]
JH Park, On Synchronization of Unified Chaotic Systems via Nonlinear Control, Chaos Solitions & Fractals. Vol. 25 (2005), pp.699-704.
DOI: 10.1016/j.chaos.2004.11.031
Google Scholar
[11]
JC Sprott, Some Simple Chaotic Flows, Phys Rev E. Vol. 50 (1994), pp.647-650.
Google Scholar