Chaos Synchronization of the Modified Sprott E System

Article Preview

Abstract:

In this paper, chaos synchronization of the modified Sprott E system is investigated. Firstly, the chaotic attractors on different phase planes of the system are got by means of numerical simulation. When , the abundance dynamical behavior of the system is presented by the global bifurcation graph. Then, the chaos synchronization of the system by the full state hybrid projective synchronization (FSHPS) method is realized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 798-799)

Pages:

672-675

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E Ott, C Grebogi, JA Yorke . Controlling chaos , Phys Rev Lett, Vol. 64, 1990, pp.1196-1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[2] JH Park, OM Kwon, A Novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitions & Fractals, Vol. 17, 2003, pp.709-716.

DOI: 10.1016/j.chaos.2004.05.023

Google Scholar

[3] EN Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci, Vol. 20, 1963, pp.130-141.

Google Scholar

[4] OE Rossler, An equation for continuous chaos, Phys. Lett. A, Vol. 57, 1967, pp.387-398.

Google Scholar

[5] GR Chen, T Ueta, Yet another chaotic attractor, Int.J. Bifurcation chaos, Vol. 9, 1999, pp.1456-1466.

DOI: 10.1142/s0218127499001024

Google Scholar

[6] H Fujisaka, T Yamada, Stability Theory of Synchronization Motion in Coupled-oscillator Systems, Prog Theor Phys. Vol. 69 (1983), pp.32-71.

Google Scholar

[7] LM Pecora, TL Carroll, Synchronization in Chaotic Systems, Phys Rev Lett. Vol. 64 (1990), pp.821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[8] JH Lü, GR Chen, DZ cheng, Bridge the Gap Between the Lorenz System and the Chen System, Int. J of Bifurcation and Chaos. Vol. 12 (2002), pp.2917-2926.

DOI: 10.1142/s021812740200631x

Google Scholar

[9] EM Elabbasy, HN Agiza, MM EI-Dessoky, Adaptive Synchronization of a Hyperchaotic System with Uncertain Parameter, Chaos, Solitons and Fractals. Vol. 30 (2006), pp.1133-1142.

DOI: 10.1016/j.chaos.2005.09.047

Google Scholar

[10] JH Park, On Synchronization of Unified Chaotic Systems via Nonlinear Control, Chaos Solitions & Fractals. Vol. 25 (2005), pp.699-704.

DOI: 10.1016/j.chaos.2004.11.031

Google Scholar

[11] JC Sprott, Some Simple Chaotic Flows, Phys Rev E. Vol. 50 (1994), pp.647-650.

Google Scholar