[1]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[2]
D. Li, R.B. Kaner, Graphene-Based Materials, Science 320 (2008) 1170-1171.
Google Scholar
[3]
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132-145.
DOI: 10.1021/cr900070d
Google Scholar
[4]
D. Chen, L.H. Tang, J.H. Li, Graphene-based Materials in Electrochemistry, Chem. Soc. Rev. 39 (2010) 3157-3180.
Google Scholar
[5]
J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials, Science 270 (1995) 590-593.
DOI: 10.1126/science.270.5236.590
Google Scholar
[6]
E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett. 8 (2008) 2277-2282.
DOI: 10.1021/nl800957b
Google Scholar
[7]
D. Pan, S. Wang, B. Zhao, M.H. Wu, H.J. Zhang, Y. Wang, Z. Jiao, Li Storage Properties of Disordered Graphene Nanosheets, Chem. Mater. 21 (2009) 3136-3142.
DOI: 10.1021/cm900395k
Google Scholar
[8]
P. Guo, H.H. Song, X.H. Chen, Electrochemical Performance of Graphene Nanosheets as Anode Material for Lithium-ion batteries, Electrochem. Commun, 11 (2009) 1320-1324.
DOI: 10.1016/j.elecom.2009.04.036
Google Scholar
[9]
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon 45 (2007) 1558-1565.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar
[10]
Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc. 130 (2008) 5856-5857.
DOI: 10.1021/ja800745y
Google Scholar
[11]
G.X. Wang, B. Wang, J. Park, J. Yang, X.P. Shen, J. Yao, Synthesis of Enhanced Hydrophilic and Hydrophobic Graphene Oxide Nanosheets by a Solvothermal Method, Carbon 47 (2009) 68-72.
DOI: 10.1016/j.carbon.2008.09.002
Google Scholar
[12]
C. Nethravathi, M. Rajamathi, Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide, Carbon 46 (2008) 1994-(1998).
DOI: 10.1016/j.carbon.2008.08.013
Google Scholar
[13]
D.X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (2009).
DOI: 10.1016/j.carbon.2008.09.045
Google Scholar
[14]
P.C. Lian, X.F. Zhu, S.Z. Liang, Z. Li, W.S. Yang, H.H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electrochim. Acta 55 (2010) 3909-3914.
DOI: 10.1016/j.electacta.2010.02.025
Google Scholar