Zno Nanorod Synthesis via Controlled ZnO Seed Layer by Filtered Pulse Cathodic Vacuum Arc: Luminescence Enhancement

Article Preview

Abstract:

A simple synthesis route to high-quality ZnO nanorod is reported, utilizing ZnO thin films grown by Filtered Pulse Cathodic Vacuum Arc (FPCVA) deposition as seed layers and continuous growth by hydrothermal method. Depending upon the FPCVA deposited conditions, implanted voltages, thickness and annealing temperature of ZnO seed layer, the surface morphology of the ZnO nanorod on ZnO film was noticeably different. The average diameters of the nanorod on Al substrates varied from about 131.99 ± 23.87 to 418.17 ±75.50 nm. The grown ZnO nanorod showed a high crystallinity with energy gap of 3.37 eV and low defect density confirmed by UV/VIS Spectrometer and photoluminescence spectrum (PL). Large-area growth, quasi-aligned and high quality indicates that the ZnO nanorods produced have potential application in field emission and optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Wang: ACS Nano. 2 (2008) 1987.

Google Scholar

[2] Y.W. Heoa, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, and J.R. LaRoche: Mater. Sci. Eng. R. 47 (2004) 1.

Google Scholar

[3] S.H. Hwang, T.H. Chung, and B.T. Lee: Mate. Sci. Eng. B. 157 (2009) 32.

Google Scholar

[4] K.E. Lee, M. Wang, E.J. Kim, and S.H. Hahn: Curr. Appl Phys. 9 (2009) 683.

Google Scholar

[5] A. Alkaya, R. Kaplan, H. Canbolat, and S.S. Hegedus: Renewable Energy. 34 (2009)1595.

Google Scholar

[6] S. Appleyard: Renewable Energy. 34 (2009) 1651.

Google Scholar

[7] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri: Prog. Mater Sci. 54 (2009) 1.

Google Scholar

[8] X. Zhang, X. Yan, J. Zhao, Z. Qin, and Y. Zhang: Mater. Lett. 63 (2009) 444.

Google Scholar

[9] K. Hou, Chi Li, WeiLei, Xiaobing Zhang, Xiaxi Yang, Ke Qu, Baoping Wang, Zhiwei Zhao, and X.W. Sun: Physica E. 41 (2009) 470.

DOI: 10.1109/led.2009.2027138

Google Scholar

[10] F. Li, W. Bi, L. Liu, Z. Li, and X. Huang: Colloids Surf., A. 334 (2009) 160.

Google Scholar

[11] Zhiping Mao, Qiuping Shi, Linping Zhang, and Huantian Cao: Thin Solid Films. 517 (2009) 2681.

Google Scholar

[12] Je H. Park, P. Muralidharan, and Do K. Kim: Mater. Lett. 63 (2009) 1019.

Google Scholar

[13] J. Zhao, D. Wu, and J. Zhi: Bioelectrochemistry. 75 (2009) 44.

Google Scholar

[14] Y. Jiang, M. Wu, X. Wu, Y. Sun, and H. Yin: Mater. Lett. 63 (2009) 275.

Google Scholar

[15] F. Fang, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, X.W. Fan, B.H. Li, and X.H. Wang: Nanotechnology. 18 (2007) 235604.

Google Scholar

[16] Andre΄ Anders: Handbook of Plasma Immersion Ion Implantation and Deposition, (John Wiley&Sons, Inc. 181, 2000.

Google Scholar

[17] S. Goldsmith: Surf. Coat. Technol. 201 (2006) 3993.

Google Scholar

[18] S. Wang , T. Tseng, Y. Wang, C. Wang, and H. Lu: Ceram. Int. 35 (2009) 1255.

Google Scholar

[19] J.C. Anderson, K.D. Leaver, R.D. Rawling and J.M. Alexxander: Materials Science (Chapman & Hall, 4th ed., 172, 1992.

Google Scholar

[20] A. Ghosh, N.G. Deshpande, Y.G. Gudage, R.A. Joshi, A.A. Sagade, D.M. Phase, and Ramphal Sharma: J. Alloys Compd. 469 (2009) 56.

Google Scholar

[21] X. Fang, Y. Bando, G. Shen, C. Ye, U. K. Gautam, P. M. F. J. Costa, C. Zhi, . Tang, and D. Golberg: Adv. Mater. 19 (2007) 2593.

DOI: 10.1002/adma.200700078

Google Scholar

[22] Apurba Dev, S. Chaudhuri and B. N. Dev: Bull. Mater. Sci. 31 (2008) 551.

Google Scholar

[23] Liang J., Liu J., Xie Q., Bai S., Yu W., and Qian Y.: J. Phys.Chem.B 109 (2005) 9463.

Google Scholar

[24] H. Q. Le, S. J. Chua, K. P. Loh, E A Fitzgerald, and Y W Koh: Nanotechnology. 17 (2006) 483.

Google Scholar

[25] Nastasi M., Mayer J. W., Hirvonen J. K., Ion-Solid Interaction: Fundaments and Applications, Cambridge University Press, 1996, 384

Google Scholar