Thermoelectric Properties of Sn2+-Substituted CuFeO2 Delafossite-Oxide

Article Preview

Abstract:

This study aims to investigate the effect of the Sn2+-substituted into the CuFeO2 delafossite on thermoelectric properties in the Sn content of x = 0.03, 0.05. The CuFe1−xSnxO2 samples were synthesized by solid state reaction. The crystal structure was characterized by XRD, TGA, XPS and the thermoelectric properties were measured in the range of 300 to 960 K. The Seebeck coefficient display positive sign in all temperature range and the XPS show the stable Sn+2 state as confirming the Sn-doped CuFeO2 playing p-type conductor. The Sn2+-substituted supports the mixed valency Fe3+/Fe4+ state in transition octahedral oxide of FeO6 layer enhancing Seebeck coefficient. The high Seebeck are appeared in content of x=0.03 which are 280 to 340 µV/K in the range of 300 to 800 K. The experimental Seebeck corresponds to the prediction formula at high temperature. Totally, the maximum Power Factor is 2.30×10−4 W/mK2 occurring in the CuFe0.95Sn0.05O2 at 860 K which is higher than that value of the undoped-CuFeO2 in 4 times. These support that the Sn-substituted CuFeO2 delafossite enhancing thermoelectric properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-21

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Nolas, J. Sharp and H. J. Goldsmind, "Thermoelectric basic principles and new materials developments", Germany, Spinger, 2011.

Google Scholar

[2] W. Koshibae, K. Tsutsui, and S. Maekawa, J. Phys. Rev. B 62 (2000) 6869-6872.

Google Scholar

[3] J. Plewa et. al., "Sodium cobalt oxide as functional thermoelectric material", proceeding of the 8th euopean workshop on thermoelectric material (ETS 2004), Krakow, pollen, (2004)

Google Scholar

[4] M. Ohtaki, "Thermoelectric properties and crystal chemistry of promising oxide candidate NxCoO," Proc. 18th International Conference on Thermoelectrics (ICT'99), Baltimore, Aug.-Sep. 1999, pp.565-578.

DOI: 10.1109/ict.1999.843453

Google Scholar

[5] A. Wichainchai, P. Dordor, J. P. Doumerc, E. Marquestaut, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 74 (1988) 126.

DOI: 10.1016/0022-4596(88)90338-6

Google Scholar

[6] P. Dordor, J. P. Chaminade, A. Wichainchai, E. Marquestaut, J. P. Doumerc, M. Pouchard, P. Hagenmuller, A. Ammar, J. Solid State Chem. 75 (1988) 105–112.

DOI: 10.1016/0022-4596(88)90307-6

Google Scholar

[7] M. A. Marquardt, N. A. Ashmore, D. P. Cann, Thin Solid Films 496 (2006) 146– 156.

Google Scholar

[8] C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoenphakdee and T. Seetawan, , J. Alloys Compd. 509 (2011) 4588-4594.

DOI: 10.1016/j.jallcom.2011.01.113

Google Scholar

[9] S. Shibasaki, W. Kobayashi, I. Terasaki, J. Phys. Rev. B 74 (2006) 235110.

Google Scholar

[10] T. Okuda, T. Kishimoto, K. Uto, T. Hokazono, Y. Onose,Y. Tokura, R. Kajimoto, M. Matsuda, J. Phys. Soc. Jpn. 78 (2009) 13604.

Google Scholar

[11] S. Yanagiya, N. Nong, J. Xu, N. Pryds, Materials 3 (2010) 318–328.

Google Scholar

[12] T. Nozaki, K. Hayashi and T. Kajitani, J. Chem. Engineer. Jpn. 40 (2007) 1205-1209.

Google Scholar

[13] H. Kuriyama, M. Nohara, T. Sasagawa,  K. Takubo, T. Mizokawa, K. Kimura, H. Takagi, 25th International Conference on Thermoelectrics, ICT 2006, (2006) 97–98.

DOI: 10.1109/ict.2006.331289

Google Scholar

[14] T. Nozaki, K. Hayashi, T. Kajitani, 26th International Conference on Thermoelectrics, ICT 2007, (2008) 167–170.

Google Scholar

[15] C. Liu and D. T. Morelli, J. Electron. Mater.

DOI: 10.1007/s11664-011-1508-1

Google Scholar

[16] T. Kurotori and S. Sugihara, Materials Transactions, 46 (2005) 1462 – 1465.

Google Scholar

[17] T. Nozaki, K. Hayashi and T. Kajitani , J. Electron. Mater., 39 (2010).

Google Scholar

[18] T. Kurotori and S. Sugihara, Mater. Trans. 46(2005) 462-1465.

Google Scholar

[19] C. Ruttanapun, B. Boonchom, M. Thongkam, S. Kongtaweelert, C. Thanachayanont and A. Wichainchai, J. Appl. Phys. 113, 023103 (2013)

DOI: 10.1063/1.4773335

Google Scholar

[20] N. W. Ashcroft and N. D. Memin, "Solid State Physics", Saunders College Publishing, USA, 1976.

Google Scholar

[21] B. Bellal, S. Saadi, N. Koriche A. Bouguelia and M. Trari, J. Phys. Chem. Solid. 70, pp.1132-1135 (2009)

Google Scholar

[22] H. Muguerra, C. Colin, M. Anne, M. Julien and P. Strobel, J. Solid. Chem. 181, pp.2883-2888 (2008)

Google Scholar

[23] H. Kanatani, H. Kume and T. Matsui, J. Appl. Phys. 105, 07D907 (2009).

Google Scholar