Increasing Plant Flavonoid Biomaterials in Response to UV-A Light

Article Preview

Abstract:

Flavonoid biomaterials have a protecting function from various stresses. We examined the flavonoid biosynthesis in plant treated under visible light (VL) and additional UV-A light. The transgenic tobacco containing PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) cDNA, involved in flavonoid biosynthesis from Arabidopsis thaliana, were used for studying the flavonoid biosynthesis under both light conditions comparing to non transgenic tobacco. The flavonoid biomaterials were extracted with acidic methanol and water solvent from treated plant leaves. The absorbance of each biomaterial in the extract was measured under specific wavelength using a spectrophotometer. Additional UV-A radiated to non transgenic and transgenic tobacco affect the increasing of p-coumaric acid, naringenin, apigenin and kaempherol biomaterials from themselves grown under VL (approximately 120-130%). However, PAP1 transgenic tobaccos under additional UV-A radiation enhance the accumulation of these biomaterials up to160-180% higher than non transgenic tobaccos grown under VL condition. Moreover, PAP1 transgenic tobacco radiated with UVA light also significantly increased pelargonidin biomaterial. PAP1 transgenic tobaccos had a similar phenotype with non transgenic tobaccos but the color of fully expanding flower was more pink intensity than non transgenic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

September 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Prochazkova, I. Bousova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia. 82 (2011) 513-523.

Google Scholar

[2] S. Teixeira, C. Siquet, C. Alves, I. Boal, M.P. Marques, F. Borges, J.L. Lima, S. Reis, Structure-property studies on the antioxidant activity of flavonoids present in diet, Free. Radic. Biol. Med. 39 (2005) 1099-1108.

DOI: 10.1016/j.freeradbiomed.2005.05.028

Google Scholar

[3] L.P. Taylor, E. Grotewold, Flavonoids as developmental regulators, Current Opinion in Plant Biology 8 (2005) 317-323.

DOI: 10.1016/j.pbi.2005.03.005

Google Scholar

[4] J. Kovacik, B. Klejdus, F. Stork, S. Malcovska, Sensitivity of Xanthoria parietina to UV-A: role of metabolic modulators, J. Photochem. Photobiol. B. 103 (2011) 243-250.

DOI: 10.1016/j.jphotobiol.2011.04.002

Google Scholar

[5] P.A. Kolesnikov, S.V. Zore, Anthocyanin formation in wheat shoots, induced by visible and invisible ultraviolet light, Doklady Akademii Nauk SSSR. 112 (1957) 1079-1081.

Google Scholar

[6] D.C. Close, C.L. Beadle, The ecophysiology of foliar anthocyanins, Bot. Rev. 69 (2003) 149-161.

Google Scholar

[7] J.O. Borevitz, Y. Xia, J. Blount, R.A. Dixon, C. Lamb, Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant. Cell. 12 (2000) 2383-2394.

DOI: 10.2307/3871236

Google Scholar

[8] F. Zhang, A. Gonzalez, M. Zhao, C.T. Payne, A. Lloyd, A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis, Development. 130 (2003) 4859-4869.

DOI: 10.1242/dev.00681

Google Scholar

[9] A. Gonzalez, M. Zhao, J.M. Leavitt, A.M. Lloyd, Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings, Plant J. 53 (2008) 814-827.

DOI: 10.1111/j.1365-313x.2007.03373.x

Google Scholar

[10] L. Barthelmebs, C. Divies, J.F. Cavin, Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism, Appl. Environ. Microbiol. 66 (2000) 3368-3375.

DOI: 10.1128/aem.66.8.3368-3375.2000

Google Scholar

[11] J.B. Harborne, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis in: Chapman and Hall, London, UK., 1998.

Google Scholar

[12] X. Li, M.J. Gao, H.Y. Pan, D.J. Cui, M.Y. Gruber, Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves, J. Agric. Food. Chem. 58 (2010) 1639-1645.

DOI: 10.1021/jf903527y

Google Scholar

[13] D.D. Rowan, M. Cao, K. Lin-Wang, J.M. Cooney, D.J. Jensen, P.T. Austin, M.B. Hunt, C. Norling, R.P. Hellens, R.J. Schaffer, A.C. Allan, Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana, New Phytol. 182 (2009) 102-115.

DOI: 10.1111/j.1469-8137.2008.02737.x

Google Scholar

[14] D.L. Zuluaga, S. Gonzali, E. Loreti, C. Pucciariello, E. Degl'Innocenti, L. Guidi, A. Alpi, P. Perata, Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants, Functional Plant Biology. 35 (2008) 606-618.

DOI: 10.1071/fp08021

Google Scholar

[15] E. Cominelli, G. Gusmaroli, D. Allegra, M. Galbiati, H.K. Wade, G.I. Jenkins, C. Tonelli, Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana, J. Plant. Physiol. 165 (2008) 886-894.

DOI: 10.1016/j.jplph.2007.06.010

Google Scholar

[16] T.R. Winter, M. Rostas, Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense, Environ. Pollut. 155 (2008) 290-297.

DOI: 10.1016/j.envpol.2007.11.018

Google Scholar

[17] M.E. Younis, M.N. A. Hasaneen, A.M. S. Kazamel, Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings, Protoplasma. 239 (2010) 39-48.

DOI: 10.1007/s00709-009-0080-5

Google Scholar

[18] I. Santos, F. Fidalgo, J. A. Almeida, R. Salema, Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation, Plant Science. 167 (2004) 925-935.

DOI: 10.1016/j.plantsci.2004.05.035

Google Scholar

[19] M. Havaux, K. Kloppstech, The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants, Planta. 213 (2001) 953-966.

DOI: 10.1007/s004250100572

Google Scholar

[20] G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: Location and functional significance, Plant Science. 196 (2012) 67-76.

DOI: 10.1016/j.plantsci.2012.07.014

Google Scholar