Impedance Spectroscopy Studies of DCM Doped Alq3 Organic Material

Article Preview

Abstract:

In this work, we report on the frequency-impedance characteristics of dye-doped organic material. The device structure is glass substrate/indium tin oxide/DCM:Alq3/Aluminum 100 nm. The influence of doping concentraion has been investigated by impedance spectroscopy. The impedance characteristics of the dye-doped organic material can be modelled by simply adopting the conventional equivalent circuit with the simple combination of resistors and capacitor network. The variation of bulk resistance with applied bias voltage as a result of the Space Charge Limited Conduction (SCLC) mechanism for charge conduction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-63

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Tang, S. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913-915.

DOI: 10.1063/1.98799

Google Scholar

[2] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347 (1990) 539.

DOI: 10.1038/347539a0

Google Scholar

[3] W. Brutting, S. Berleb, A.G. Muckl, Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices, Synth. Met.122 (2001) 99.

DOI: 10.1016/s0379-6779(00)01342-4

Google Scholar

[4] P.W.M. Blom, M.J.M. deJong, M.G. van Munster, Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene), Phys. Rev. B 55 (1997) R656.

DOI: 10.1103/physrevb.55.r656

Google Scholar

[5] S. Khantham, B. Tunhoo, K. Onlaor, T. Thiwawong and J. Nukeaw, Electrical properties of dye-doped colour tunable organic light emitting diode, Can. J. Chem. Eng., 90 (2012) 903–908.

DOI: 10.1002/cjce.21658

Google Scholar

[6] C. B. Lee, A. Uddin, C. C. Teo, Effect of polar dopant on energetic and positional disorders in tris(8-hydroxyquinolinato) aluminum (Alq3), Appl. Phys. A 83 (2006) 115-121.

DOI: 10.1007/s00339-005-3467-y

Google Scholar

[7] G. Chauhan, R. Srivastava, P. Tyagi, A. Kumar, P.C. Srivastava, M.N. Kamalasanan, Frequency dependent electrical transport properties of 4,4',4''-tris (N-3-methylphenyl-N-phenylamine) triphenylamine by impedance spectroscopy, Syn. Met. 160 (2010) 1422–1426.

DOI: 10.1016/j.synthmet.2010.04.022

Google Scholar

[8] S.H. Kim, K.H. Choi, H.M. Lee, D.H. Hwang, L.M. Do, H.Y. Chu, T. Zyung,Impedance spectroscopy of single- and double-layer polymer light-emitting diode, J. Appl.Phys. 87 (2000) 882.

DOI: 10.1063/1.371956

Google Scholar

[9] M.A. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York, 1970.

Google Scholar

[10] A. A. Shoustikov, Y. You and M. E. Thompson, Electroluminescence Colour Tuning by Dye Doping in Organic Light-Emitting Diodes, IEEE J. Sel. Top. Quantum Elect.4 (1998) 3–13.

DOI: 10.1109/2944.669454

Google Scholar

[11] A. C. Uddin, C. B. Lee, X. Hu, T. K. S. Wong and X. W. Sun, Effect of Doping on Optical and Transport Properties of Charge Carriers in Alq3, J. Cryst. Growth 288 (2006) 115–118.

DOI: 10.1016/j.jcrysgro.2005.12.034

Google Scholar