p.1228
p.1235
p.1240
p.1250
p.1257
p.1265
p.1269
p.1278
p.1283
Syngas Production via Carbon Dioxide Reforming of Methane in a Wall-Coated Monolith Reactor
Abstract:
The production of syngas via carbon dioxide reforming or dry methane reforming (DMR) was studied in the present study. To reduce pressure drop and improve the performance, the reaction was carried out over a 10%Ni/Al2O3-MgO catalyst in a wall-coated monolith reactor at about 600 °C, atmospheric pressure. The monolith reactor comprised of 37 circular flow channels of 3-mm-diameter. The reactant gases i.e. CH4 and CO2 at stoichiometric molar ratio of 1:2 was fed into the reactor at the volumetric flow rate of 450, 600 and 750 mL/min corresponding to various gas space velocities (GSV) i.e. 0.57, 0.76, and 0.96 s-1, respectively. Under 24-hr continuous operations, the stability of system could be sustained and the deactivation by carbon deposition was not observed. The experimental results did show that the conversion of methane depended upon the GSV i.e. the %CH4 conversion were 50, 45 and 40% for the GSV of 0.57, 0.76, and 0.96 s-1, respectively. In addition, the %H2 yield, %H2 selectivity, %CO yield, %CO selectivity also depended on the feeding rate and so affected the performance of the wall-coated monolith reactor as a reformer.
Info:
Periodical:
Pages:
1257-1264
Citation:
Online since:
September 2013
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: