Syngas Production via Carbon Dioxide Reforming of Methane in a Wall-Coated Monolith Reactor

Article Preview

Abstract:

The production of syngas via carbon dioxide reforming or dry methane reforming (DMR) was studied in the present study. To reduce pressure drop and improve the performance, the reaction was carried out over a 10%Ni/Al2O3-MgO catalyst in a wall-coated monolith reactor at about 600 °C, atmospheric pressure. The monolith reactor comprised of 37 circular flow channels of 3-mm-diameter. The reactant gases i.e. CH4 and CO2 at stoichiometric molar ratio of 1:2 was fed into the reactor at the volumetric flow rate of 450, 600 and 750 mL/min corresponding to various gas space velocities (GSV) i.e. 0.57, 0.76, and 0.96 s-1, respectively. Under 24-hr continuous operations, the stability of system could be sustained and the deactivation by carbon deposition was not observed. The experimental results did show that the conversion of methane depended upon the GSV i.e. the %CH4 conversion were 50, 45 and 40% for the GSV of 0.57, 0.76, and 0.96 s-1, respectively. In addition, the %H2 yield, %H2 selectivity, %CO yield, %CO selectivity also depended on the feeding rate and so affected the performance of the wall-coated monolith reactor as a reformer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 805-806)

Pages:

1257-1264

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Patel, A.K. Sunol: Int. J. Hydrogen. Energy. Vol. 32 (2007), p.2344.

Google Scholar

[2] E. Ruckenstein, Y.H. Hu: Appl. Catal. A. Vol. 133 (1995), p.149.

Google Scholar

[3] K. Nagaoka, K. Seshan, K. Aika, J.A. Lercher: J. Catal. Vol. 197 (2001), p.34.

Google Scholar

[4] T. Ostrowski, A. Giroir-Fendler, C. Mirodatos, L. Mleczko: Catal. Today. Vol. 40 (1998), p.181.

Google Scholar

[5] M.A. Dehkordi, M. Memari: Int. J. Hydrogen. Energy. Vol. 34 (2009), pp.1275-1291.

Google Scholar

[6] M.V. Twigg, Catalyst handbook. 2nd ed. Wolfe Publishing Ltd, London, England (1989), p.225.

Google Scholar

[7] R. Mart´ınez, E. Romero, C. Guimon, R. Bilbao, Applied Catalysis A: General Vol. 274 (2004), p.139.

Google Scholar

[8] S.Y. Foo,C. K. Cheng, Tuan-Huy Nguyen, A.A. Adesina, Catal. Today. Vol. 164, 2011, p.221.

Google Scholar

[9] J.R. Rostrup-Nielsen, J. -H. Bak-Hansen: J. Catal. Vol. 144 (1992), p.38.

Google Scholar

[10] A.F. Sammels, M. Schwartz, R.A. Mackay, T.F. Barton, D.R. Peterson: Catal. Today. Vol. 56(2000), p.325.

Google Scholar

[11] J.N. Theron, M.E. Dry, E. Van Steen, J.C.G. Fletcher: Stud. Surf. Sci. Catal. Vol. 107 (1997), pp.455-60.

Google Scholar

[12] A.M. Adris, T. Boyd, C. Brereton, J.R. Grace, C.J. Lim, W. Wolfs, Production of pure hydrogen by the fluidized bed membrane reactor, In: Proceedings of 14th world hydrogen energy conference, Montreal, Canada; (2002).

DOI: 10.2202/1542-6580.1241

Google Scholar

[13] S.S.E.H. Elnashaie, P. Prasad, Z. Chen: Ind. Eng. Chem. Res. 44 (2005), p.4871.

Google Scholar

[14] D. Makel, Low cost microchannel reformer for hydrogen production from natural gas. In: California Energy Commission (CEG), Energy Innovations Small Grant (EISG) Program; (1999).

Google Scholar

[15] O.P. Klenov, S.A. Pokrovskaya, N.A. Chumakova, S.N. Pavlova, V.A. Sadykov, A.S. Noskov: Catal. Today. Vol. 144 (2009), p.258.

DOI: 10.1016/j.cattod.2008.11.014

Google Scholar

[16] B.D. Gould, X. Chen, J.W. Schwank: J. Catal. Vol. 250 (2007), p.209.

Google Scholar

[17] L. Shi, D.J. Bayless, M.E. Prudich: Int. J. Hydrogen. Energy. Vol. 34 (2009), p.7666.

Google Scholar

[18] A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa, J. Catal. Vol. 213 (2003), p.191.

Google Scholar

[19] N. Laosiripojana, S. Assabumrungrat: Appl. Catal A. Vol. 290 (2005), p.200.

Google Scholar

[20] M. Lee, R. Greif, C. P Grigoropoulos, H.G. Park, F. K Hsu: J. Power Sources. Vol. 166 (2007), p.194.

Google Scholar