Effect of Bi Addition on the Electrochemical Behavior of Zinc Electrodes in Concentrated Alkaline Solutions

Article Preview

Abstract:

The electrochemical behavior of zinc electrode with bismuth addition in 35%KOH solutions has been investigated systematically by electrochemical methods including linear polarization, potentiostatic polarization, potential-time measurements at a constant current density, combining the observations of scanning electron microscopy (SEM). Linear polarization results showed that the open circuit potential shifted positively with increasing bismuth content, which is explained based on the gassing data and change in the exchange current of the zinc electrode. Addition of bismuth increased the exchange current of zinc reaction and caused an increase in the measured open circuit potential. Galvanostatic results showed that the addition of bismuth shortened the passivation time. Scanning electron microscopy images showed that the addition of bismuth aggravated the corrosion of zinc electrode which may be responsible for the increased tendency to passivation at high current densities. It has been found that at low current densities the reaction kinetics may be increased by addition of Bi, which is general agreement with the discharging test of actual alkaline batteries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 805-806)

Pages:

1240-1249

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.G. Zhang, Corrosion and Electrochemistry of Zinc, Plenum Publishers, New York (1996).

Google Scholar

[2] X.G. Zhang. J. Power Sources 163 (2006) 591-597.

Google Scholar

[3] R.M. Dell. Solid State Ionics 134 (2000) 139-158.

Google Scholar

[4] McLarnon, F. R., and Cairns, E.J.: The secondary alkaline zinc electrode, J. Electrochem. Soc. 138, 645-664, (1991).

DOI: 10.1149/1.2085653

Google Scholar

[5] McBreen, J., and Cairns, E.J.: The zinc electrode, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 11, H. Gerischer and C. W. Tobias(eds. ), pp.273-352, John Wiley & sons, New York, (1978).

Google Scholar

[6] Gouda, K. K., Khedr, M. G. A., and Shams EI Din, A. M.: Role of anions in the corrosion and corrosion-inhibition of zinc in aqueous solutions, Corros. Sci. 7, 221-230, (1967).

DOI: 10.1016/s0010-938x(67)80084-2

Google Scholar

[7] Kordesch, K. V.: Alkaline manganese dioxide zinc batteries, in Batteries, K. V. Kordesch (ed), Vol. 1, pp.241-384, Marcel Dekker, New York, (1974).

DOI: 10.1007/978-1-4615-6687-8_6

Google Scholar

[8] Brodd, R. J.: Batteries for Cordless Appliances, Research Studies Press, Letchworth, England, (1987).

Google Scholar

[9] Huber, R.: Leclanche batteries, in Batteries, K. V. Kordesch (ed. ), Vol. 1, pp.1-239, Marcel Dekker, New York, (1974).

Google Scholar

[10] Lee, T. S.: Hydrogen overpotential on zinc containing small amounts of impurities in concentrated alkaline solution, J. Electrochem. Soc. 120, 707-709, (1973).

DOI: 10.1149/1.2403541

Google Scholar

[11] Miura, A., Takata, K., Okazaki, R., Ogawa, H., Uemura, T., Nakamura, Y., and Kasahara, N.: Development of corrosion resistant zinc alloys for alkaline-manganese batteries, Denki Kagaku 1989(6), 57, 459.

Google Scholar

[12] Dirkse, T. P.: The behaviour of the zinc electrode in alkaline solutions, J. Electrochem. Soc. 126, 541-543, (1979).

Google Scholar

[13] Yoshizawa, H., and Miura, A.: Mercury free alkaline manganese batteries, Prog. Batteries Battery Mater. 12, 132-139, (1993).

Google Scholar

[14] N. Pistofidis, G. Vourlias, S. Konidaris, El. Pavlidou, A. Stergiou, G. Stergioudis. The effect of bismuth on the structure of zinc hot-dip galvanized coatings. Materials Letters. 61, 994-997, (2007).

DOI: 10.1016/j.matlet.2006.06.029

Google Scholar

[15] M. Gagne, Bull. Bismuth Inst. 72(1998)1.

Google Scholar

[16] P. Beguin, M. Bosschaerts, D. Dhaussy, R. Pankert, M. Gilles, Bull. Bismuth Inst. 76(2000)1.

Google Scholar

[17] O. Akinlade, R. N. Singh, F. Sommer. Thermodynamic investigation of viscosity in Cu-Bi and Bi-Zn liquid alloys. Journal of Alloys and Compounds. 267, 195-198, (1998).

DOI: 10.1016/s0925-8388(97)00547-1

Google Scholar

[18] Bocchi, N., da Cunha, M. R., and D, Alkaline, C.V.: The passivating films of zinc in alkaline solution, Key Eng. Mater. 20-28, 3941-3946, (1988).

DOI: 10.4028/www.scientific.net/kem.20-28.3941

Google Scholar

[19] Chang, Y., and Prentice, G.: A model for the anodic dissolution of the zinc electrode in the prepassive region, J. Electrochem. Soc. 136, 3398-3403, (1989).

DOI: 10.1149/1.2096460

Google Scholar

[20] Dirkse, T. P.: Voltage decay at passivated zinc anodes, J. Appl. Electrochem. 1, 27-33, (1971).

DOI: 10.1007/bf00615743

Google Scholar

[21] Hull, M. N., Ellison, J. Electrochem. Soc. 117, 192-198, (1970).

Google Scholar

[22] Sato, Y., Niki, H., and Takamura, T.: Effects of carbonate on the anodic dissolution and the passivation of zinc electrode in concentrated solution of potassium hydroxide, J. Electrochem. Soc. 118, 1269-1272, (1971).

DOI: 10.1149/1.2408303

Google Scholar

[23] Dirkse, T. P., and Hampson, N. A.: The anodic behaviour of zinc in aqueous KOHsolution. Part Ⅰ. Passivation experiments at very high current densities, Electrochim. Acta 16, 2049-2056, (1971).

DOI: 10.1016/0013-4686(71)85018-1

Google Scholar

[24] Passivity and passivity breakdown of a zinc electrode in aerated neutral sodium nitrate solutions. Electrochimica Acta 50 (2005) 1265-1274.

DOI: 10.1016/j.electacta.2004.07.051

Google Scholar

[25] Liu, M., Cook, G. M., and Yao, N.P.: Passivation of zinc anodes in KOH electrolytes, J. Electrochem. Soc. 128, 1663-1668, (1981).

DOI: 10.1149/1.2127707

Google Scholar

[26] X.G. Zhang, Zinc electrode: Form, morphology and Reactivity, Chapter in Encyclopedia of Power Sources, Elsevier, in preparation.

Google Scholar