Rapid Mineralization of Rhodamine B Wastewater by Microwave Synergistic Fenton-Like Oxidation Process

Article Preview

Abstract:

The coulpling method of microwave irradiation and Fenton-like reaction with magnetic nanomaterials of CuFe2O4 as the catalyst was used for degradation of Rhodamine B wastewater. Factors affecting the degradation rate of Rhodamine B such as H2O2 dosage, CuFe2O4 dosage, Rhodamine B initial concentration, reaction temperature and so on were investigated systematically. The experimental results showed that the microwave-assisted Fenton-like process using H2O2/CuFe2O4 was the most effective treatment process compared with other methods. Unlike the conventional Fenton reactions, which are catalyzed by homogeneous catalysts/promoters, the nanopowder CuFe2O4 catalyst is easily collected by an external magnetic field and remains efficient in reuse. The results showed that under the given conditions (80°C, pH = 4, Rhodamine B initial concentration = 100mg/L, CuFe2O4 dose = 0.375g/L, H2O2 dose = 2.5mL/L, Reaction time = 2min), the removal rate of Rhodamine B could reach nearly 100%. Moreover, the COD determination results showed that under above conditions, the COD value could reach zero.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1384-1387

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. T Tsai., C.Y. Chang, M.C. Lin, S.F. Chien, H. F. Sun, M.F. Hsieh, J. Chemosphere. 45 (2001) 51–58.

Google Scholar

[2] Y. Wang, W. Chu, Ind. Eng. Chem. Res., 50 (2011) 8734-8741.

Google Scholar

[3] H. M. Gad, A. A. El-Sayed, J. Hazard. Mater., 168 (2009) 1070-1081.

Google Scholar

[4] A. Marti nez-de la Cruz, U.M. Garcia Perez, Mater. Res. Bull., 45 (2010) 135-141.

Google Scholar

[5] M. Asilturk, F. Sayilkan, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu, E. Arpac, J. Hazard. Mater., 129 (2006) 164-170.

DOI: 10.1016/j.jhazmat.2005.08.027

Google Scholar

[6] M. Hou, L. Liao, W. Zhang, X. Tang, H. Wan, G. Yin, Chemosphere 83 (2011) 1279-1283.

Google Scholar

[7] M.A. Behnajady, N. Modirshahla, S. Bavili Tabrizi, S. Molanee, J. Hazard. Mater., 152 (2008) 381-386.

Google Scholar

[8] S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Chem. Eng. J., 158 (2010) 550-557.

Google Scholar

[9] Y. Yang, P. Wang, S. Shi, Y. Liu, J. Hazard. Mater., 168 (2009) 238-245.

Google Scholar

[10] C. F. Gromboni, M.Y. Kamogawa, A.G. Ferreira, J.A. Nóbrega, A.R.A. Nogueira, J. Photochem. Photobiol., A 185 (2007) 32-37.

Google Scholar

[11] Y. Yang, P. Wang, S. Shi, Y. Liu, J. Hazard. Mater. 168 (2009) 238-245.

Google Scholar

[12] R. Parella, Naveen, A. Kumar, S. A. Babu., Tetrahedron Lett., 54 ( 2013) 1738-1742.

Google Scholar

[13] S. Ashoka, P. Chithaiah, K. V. Thipperudraiah, G. T. Chandrappa, Inorg. Chim. Acta., 363 (2010) 3442-3447.

DOI: 10.1016/j.ica.2010.06.048

Google Scholar

[14] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset, Chem. Rev., 111 ( 2011) 3036-3075.

DOI: 10.1021/cr100230z

Google Scholar

[15] N. Panda, A. K. Jena, S. Mohapatra, S. R. Rout. Tetrahedron Lett., 52 ( 2011) 1924-(1927).

Google Scholar