Plasmon-Induced Photodegradation of Toxic Pollutants with Ag/AgI/Bi2WO6 under Visible-Light Irradiation

Article Preview

Abstract:

The Ag/AgI/Bi2WO6 photocatalysts were successfully synthesized by deposition-precipitation and photoreduction methods. The catalyst showed high and stable photocatalytic activity for the degradation of the RhB under visible light irradiation (λ>400 nm). On the basis of a new plasmonic photocatalytic mechanism, the photogenerated electron-hole pairs are formed in Ag nanoparticles (NPs) due to surface plasmon resonance under visible-light irradiation. Then, the photoexcited electrons at the Ag NPs are injected into AgI. On the other hand, the band position shows that AgI and Bi2WO6 have the matching band potentials in the AgI/Bi2WO6 heterostructure composites. So the photoexcited electrons is ultimately transfer to the Bi2WO6 conduction band (CB), photo-induced holes (hVB+) is transfer to the AgI valence band (VB) and the simultaneous transfer to compensative electrons from I- to the Ag NPS. This the result indicates that the high photosensitivity of noble metal Ag NPs due to surface plasmon resonance, which is not only improve the photocatalytic performance, but also offer a new idea for preparation of new photocatalysts .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1534-1542

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735-758.

Google Scholar

[2] X. Chen, S. S Mao, Chem. Rev. 2007, 107, 2891-2959.

Google Scholar

[3] X. L. He, X. L. Jing, N. H. Yu, J. Phys. Chem. B, 2006, 110, 1559-1565.

Google Scholar

[4] X. Zhang, Z. H Ai, F. L. Jia, J. Phys. Chem. C, 2008, 112, 747-753.

Google Scholar

[5] H. G. Kim, D. W. H. Wang, J. S. Lee, J. Am. Chem. Soc. 2004, 126, 8912-8913.

Google Scholar

[6] D. K Ma, S. M. Huang, J. Phys. Chem. C 2009, 113, 4369-4374.

Google Scholar

[7] R. Jin, W. Z. Wang, Applied Catalysis B: Environmental 2009, 92, 50-55.

Google Scholar

[8] L. S. Zhang, K. H. Wong, Environ. Sci. Technol. 2010, 44, 1392-1398.

Google Scholar

[9] R. Jin, Y. C. Cao, C. A. Mirkin, Science 2001, 294, 1901-(1903).

Google Scholar

[10] S. Link, M. A. EI-Sayed, J. Phys Chem. B. 1999, 103, 8410-8426.

Google Scholar

[11] J. G Yu, J. Phys. Chem. C, 2009. 113, 16394-16401.

Google Scholar

[12] M. J. Mulvihill, X. Y. Ling, J. Am. Chem. Soc. 2010, 132, 268-274.

Google Scholar

[13] T. Yang, J. Am. Chem. Soc., 2005, 127, 7632-7637.

Google Scholar

[14] C. Hu, J. Am. Chem. Soc., 2010, 132(2) 857-862.

Google Scholar

[15] C. Hu, Environ. Sci. Technol. 2006, 40, 7903-7907.

Google Scholar

[16] K. Shimizu, M. Tsuzuki, K. Kato, S. Yokota, et al. J. Phys. Chem. C, 2007, 111, 950-959.

Google Scholar

[17] X. She, M. Flytzani-Stephanopoulos, J. Catal. 2006, 237, 79-93.

Google Scholar

[18] H. Vogelsang, O. Husberg, W. Osten, Journal of Luminescence, 2000, 86, 87-94.

Google Scholar

[19] Libin Yang, Xin Jiang, Weidong Ruan, J. Phys. Chem. C 2009, 113, 16226-16231.

Google Scholar

[20] H. F. Cheng et al, B. B. Huang,Y. Da, Langmuir, 2010, 26, 6618-6624.

Google Scholar

[21] C. C. Chang, C. K. Lin, C. C. Chan, et al. Thin Solid Films, 2006, 494, 274-278.

Google Scholar

[22] C. Zhang, Y. Zhu, Chem. Mater. 2005, 17, 3537-3545.

Google Scholar

[23] T. X. Wu, G. M. Liu, J. C. Zhao, J. Phys. Chem. B, 1998, 102, 5845-5851.

Google Scholar

[24] N. P. Xu, Z. F. Shi, Y. Q Fan, et al. Ind. Eng. Chem. Res. 1999, 38, 373-379.

Google Scholar

[25] J. Zeng, M. Xin, K. W. Li, et al. J. Phys. Chem. C, 2008, 112, 4159-4167.

Google Scholar

[26] N. R. C. F. Machado, V. S. Santana, Catal. Today, 2005, 107-108, 595-601.

Google Scholar

[27] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 2008, 130, 9658-9659.

Google Scholar

[28] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735-758.

Google Scholar

[29] S. S. Soni, M. J. Henderson, J. F. Bardeau, A. Gibaud, Adv. Mater. 2008, 20, 1493-1498.

Google Scholar

[30] S. B. Zhu, T. G. Xu, H. B. Fu, J. C. Zhao, et al. Eniron. Sci. Technol. 2007, 41, 6234-6239.

Google Scholar

[31] H. Zhang, R. L. Zong, J. C. Zhao, et al. Eniron. Sci. Technol. 2008, 42, 3803-3805.

Google Scholar

[32] Hao Zhang, R. L Zong, Y. F. Zhu, J. Phys. Chem. C 2009, 113, 4605-4611.

Google Scholar

[33] M. Jakob, H. Levanon, P. V. Kamat, Nano Lett. 2003, 3, 353-358.

Google Scholar

[34] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735-758.

Google Scholar

[35] J. Ren, W. Z. Wang, Applied Catalysis B: Environmental 92 (2009) 50-55.

Google Scholar

[36] Y. Ohko, T. Tatsuma, T. Fujii, et al. Nat. Mater. 2003, 2, 29-31.

Google Scholar

[37] K. Naoi, Y. Ohko, T. Tatsuma, J. Am. Chem. Soc. 2004, 126, 3664-3668.

Google Scholar

[38] P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, et al. Angew. Chem., Int. Ed. 2008, 47, 793-796.

Google Scholar