Uptake of Arsenic(V) with Aluminum Modified MCM-41

Article Preview

Abstract:

The highly ordered mesoporous MCM-41 was synthesized and modified with various content of aluminum (0-15%) using an incipient wetness impregnation technique. The prepared Al modified MCM-41 materials were characterized by XRD, and explored as adsorbents for arsenic(V) removal. Al loading and calcination temperature played significant roles in the absorbents structures and adsorption capacities. The maximal arsenic(V) adsorption capacity of 16.3 mgAs/gAl was obtained when Al loading of 10 wt% and calcination temperature of 400 °C were used.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1518-1522

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review, Talanta 58 (2002) 201-205.

Google Scholar

[2] D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazar. Mater. 142 (2007) 1-53.

DOI: 10.1016/j.jhazmat.2007.01.006

Google Scholar

[3] V.K. Sharma, M. Sohn, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int. 35 (2009) 743-759.

DOI: 10.1016/j.envint.2009.01.005

Google Scholar

[4] K. Simeonidis, Th. Gkinis, S. Tresintsi, C. Martinez-Boubeta, G. Vourlias, I. Tsiaoussis, G. Stavropoulos, M. Mitrakas, M. Angelakeris, Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents, Chem. Eng. J. 168 (2011).

DOI: 10.1016/j.cej.2011.01.074

Google Scholar

[5] S.K. Das, M.K. Bhunia, A. Bhaumik, Highly ordered Ti-SBA-15: Efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation, J. Solid State Chem. 183 (2010) 1326-1333.

DOI: 10.1016/j.jssc.2010.04.015

Google Scholar

[6] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710.

Google Scholar

[8] W. Hu, Q. Luo, Y.C. Su, L. Chen, Y. Yue, C.H. Ye, F. Deng, Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy, Micropor. Mesopor. Mater. 92 (2006) 22-30.

DOI: 10.1016/j.micromeso.2005.12.013

Google Scholar

[9] A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Micropor. Mesopor. Mater. 77 (2005) 1-45.

Google Scholar

[10] P. Van der Voort, C. Vercaemst, D. Schaubroeck, F. Verpoort: Phys. Chem. Chem. Phys. Vol. 10 (2008), p.347.

DOI: 10.1039/b707388g

Google Scholar

[11] G. Prieto, A. Martínez, R. Murciano, M.A. Arribas, Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis, Appl. Catal. A: Gen. 367 (2009).

DOI: 10.1016/j.apcata.2009.08.003

Google Scholar

[12] L.C. Juang, C.C. Wang, C.K. Lee: Chemosphere Vol. 64 (2006), p. (1920).

Google Scholar

[13] K.Y. Ho, G. McKay, K.L. Yeung: Langmuir Vol. 19 (2003), p.3019.

Google Scholar

[14] K.M. Parida, S.K. Dash, Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane, J. Hazar. Mater. 179 (2010) 642-649.

DOI: 10.1016/j.jhazmat.2010.03.051

Google Scholar

[15] D. Pérez-Quintanilla, A. Sánchez, I. del Hierro, M. Fajardo, I. Sierra, Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole, J. Colloid Interface Sci. 313 (2007) 551-562.

DOI: 10.1016/j.jcis.2007.04.063

Google Scholar

[16] S.A. Idris, C.M. Davidson, C. McManamon, M. A. Morris, P. Anderson, L.T. Gibson, Large pore diameter MCM-41 and its application for lead removal from aqueous media, J. Hazar. Mater. 185 (2011) 898-904.

DOI: 10.1016/j.jhazmat.2010.09.105

Google Scholar

[17] M. Jang, E.W. Shin, J.K. Park, S. Choi: Environ. Sci. Technol. Vol. 37(2003), p.5062.

Google Scholar