[1]
B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review, Talanta 58 (2002) 201-205.
Google Scholar
[2]
D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazar. Mater. 142 (2007) 1-53.
DOI: 10.1016/j.jhazmat.2007.01.006
Google Scholar
[3]
V.K. Sharma, M. Sohn, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int. 35 (2009) 743-759.
DOI: 10.1016/j.envint.2009.01.005
Google Scholar
[4]
K. Simeonidis, Th. Gkinis, S. Tresintsi, C. Martinez-Boubeta, G. Vourlias, I. Tsiaoussis, G. Stavropoulos, M. Mitrakas, M. Angelakeris, Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents, Chem. Eng. J. 168 (2011).
DOI: 10.1016/j.cej.2011.01.074
Google Scholar
[5]
S.K. Das, M.K. Bhunia, A. Bhaumik, Highly ordered Ti-SBA-15: Efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation, J. Solid State Chem. 183 (2010) 1326-1333.
DOI: 10.1016/j.jssc.2010.04.015
Google Scholar
[6]
C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710.
Google Scholar
[8]
W. Hu, Q. Luo, Y.C. Su, L. Chen, Y. Yue, C.H. Ye, F. Deng, Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy, Micropor. Mesopor. Mater. 92 (2006) 22-30.
DOI: 10.1016/j.micromeso.2005.12.013
Google Scholar
[9]
A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Micropor. Mesopor. Mater. 77 (2005) 1-45.
Google Scholar
[10]
P. Van der Voort, C. Vercaemst, D. Schaubroeck, F. Verpoort: Phys. Chem. Chem. Phys. Vol. 10 (2008), p.347.
DOI: 10.1039/b707388g
Google Scholar
[11]
G. Prieto, A. Martínez, R. Murciano, M.A. Arribas, Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis, Appl. Catal. A: Gen. 367 (2009).
DOI: 10.1016/j.apcata.2009.08.003
Google Scholar
[12]
L.C. Juang, C.C. Wang, C.K. Lee: Chemosphere Vol. 64 (2006), p. (1920).
Google Scholar
[13]
K.Y. Ho, G. McKay, K.L. Yeung: Langmuir Vol. 19 (2003), p.3019.
Google Scholar
[14]
K.M. Parida, S.K. Dash, Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane, J. Hazar. Mater. 179 (2010) 642-649.
DOI: 10.1016/j.jhazmat.2010.03.051
Google Scholar
[15]
D. Pérez-Quintanilla, A. Sánchez, I. del Hierro, M. Fajardo, I. Sierra, Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole, J. Colloid Interface Sci. 313 (2007) 551-562.
DOI: 10.1016/j.jcis.2007.04.063
Google Scholar
[16]
S.A. Idris, C.M. Davidson, C. McManamon, M. A. Morris, P. Anderson, L.T. Gibson, Large pore diameter MCM-41 and its application for lead removal from aqueous media, J. Hazar. Mater. 185 (2011) 898-904.
DOI: 10.1016/j.jhazmat.2010.09.105
Google Scholar
[17]
M. Jang, E.W. Shin, J.K. Park, S. Choi: Environ. Sci. Technol. Vol. 37(2003), p.5062.
Google Scholar