[1]
J.G. Liu, Li G.H., Shao W.C., Xu J.K.: Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species. Pedosphere. Vol. 20(2010), p.96.
DOI: 10.1016/s1002-0160(09)60288-5
Google Scholar
[2]
A. Leura Vicencio; Alonso Castro A. J.:, Removal and Accumulation of As, Cd and Cr by Typha latifolia. Bulletin of environmental contamination and toxicology. (2013), p.1.
DOI: 10.1007/s00128-013-0962-2
Google Scholar
[3]
M. YANG, XIAO X., MIAO X., GUO Z., WANG F: Effect of amendments on growth and metal uptake of giant reed (Arundo donax L. ) grown on soil contaminated by arsenic, cadmium and lead. Transactions of Nonferrous Metals Society of China. Vol. 22(2012).
DOI: 10.1016/s1003-6326(11)61342-3
Google Scholar
[4]
X. H. Zhang, Liu J., Huang H. T., Chen J., Zhu Y. N., Wang D. Q.: Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere. Vol. 67(2007), p.1138.
DOI: 10.1016/j.chemosphere.2006.11.014
Google Scholar
[5]
K. Mandiwana, Panichev N., Kataeva M., Siebert S.: The solubility of Cr (III) and Cr (VI) compounds in soil and their availability to plants. J Hazard Mater. Vol. 147(2007), p.540.
DOI: 10.1016/j.jhazmat.2007.01.049
Google Scholar
[6]
H. Shahandeh, Hossner L. R.: Enhancement of cr (lll) phytoaccumulation. Int J Phytoremediat. Vol. 2(2000), p.269.
DOI: 10.1080/15226510009359037
Google Scholar
[7]
X. Zhang; Liu J., Wang D.,: Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz. Bulletin of environmental contamination and toxicology. Vol. 82(2009), p.358.
DOI: 10.1007/s00128-008-9587-2
Google Scholar
[8]
C.R. Ge, Zhang Q.C.: Microbial community structure and enzyme activities in a sequence of copper-polluted soils. Pedosphere. Vol. 21(2011), p.164.
DOI: 10.1016/s1002-0160(11)60114-8
Google Scholar
[9]
J. Liu, Duan C. Q., Zhang X. H., Zhu Y. N., Hu C.: Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and soil. Vol. 322(2009), p.187.
DOI: 10.1007/s11104-009-9907-2
Google Scholar
[10]
Y. Gao, Zhou P., Mao L., Zhi Y., Zhang C, Shi W.: Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution. Journal of Environmental Sciences. Vol. 22(2010), p.1040.
DOI: 10.1016/s1001-0742(09)60215-1
Google Scholar
[11]
G. Ge, Li Z., Fan F., Chu G.: Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil . Vol. 326(2010), p.31.
DOI: 10.1007/s11104-009-0186-8
Google Scholar
[12]
K. Wang, Zhang J.: Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. Journal of Soils and Sediments. (2012), p.11.
DOI: 10.1007/s11368-012-0539-4
Google Scholar
[13]
A. Baker, Brooks R.: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution: Ecology and phytochemistry. Biorecovery. Vol. 1(1989), p.81.
Google Scholar
[14]
Y. Chen, Lin Q., Luo Y., He Y., Zhen S.: Wong M., The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. Vol. 50(2003), p.807.
DOI: 10.1016/s0045-6535(02)00223-0
Google Scholar
[15]
D. Wang, Zhang X. :OXALIC ACID ENHANCES CR TOLERANCE IN THE ACCUMUL ATING PLANT LEERSIA HEXANDRA SWARTZ. Int J Phytoremediat. Vol. 14(2012), p.966.
DOI: 10.1080/15226514.2011.636406
Google Scholar
[16]
C. Turgut, Katie Pepe M.: The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution. Vol. 131(2004), p.147.
DOI: 10.1016/j.envpol.2004.01.017
Google Scholar
[17]
Y. Gao, Zhu L.: Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Sciences-Amsterdam. Vol. 17(2005), p.14.
Google Scholar