Influence of Alkalinity on Partial Nitrification Treating Domestic Sewage and the Microbial Community in MBR

Article Preview

Abstract:

Partial nitrification (PN) was rapidly started-up in a sequencing batch membrane bioreactor (MBR) treating domestic wastewater with low temperature (11~15°C), the influence of alkalinity on PN process and the feasibility to control the ratio of nitrite to ammonia in effluent were investigated through changing the ratio of Alkalinity/ammonia in influent. Results showed that effluent ratio can be controlled flexibly with the liner relationship between ammonia conversion and the ratio of alkalinity to ammonia when alkalinity is insufficient, whereas, that could be effectively achieved by the indicator role of alkalinity on nitrite. Phylogenetic results indicated the predominance of Nitrosomonas and the absence of the Nitrosospira in the condition of insufficient alkalinity, which was consistent with the SEM results. FISH results suggested that lack of alkalinity presented little impact on the relative quantity of AOB.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1564-1569

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.J. Cervantes, D.A. De la Rosa, J. Gomez: Bioresour Technol, Vol. 79 (2001), p.165.

Google Scholar

[2] B. Ma, S. Zhang, L. Zhang, P. Yi, J. Wang, S. Wang, Y. Peng: Bioresour Technol, Vol. 102 (2011) , p.8331.

Google Scholar

[3] Z. Liang, Z. Han, S. Yang, X. Liang, P. Du, G. Liu, Y. Yang: Bioresour Technol, Vol. 102 (2011) , p.710.

Google Scholar

[4] Y.J. Feng, S.K. Tseng, T.H. Hsia, C.M. Ho, W.P. Chou, J Biosci Bioeng: Vol. 104 (2007) , p.182.

Google Scholar

[5] D. Vejmelkova, D.Y. Sorokin, B. Abbas, O.L. Kovaleva, R. Kleerebezem, M.J. Kampschreur, G. Muyzer, M.C. van Loosdrecht: Appl Microbiol Biotechnol, Vol. 93 (2012) , p.401.

DOI: 10.1007/s00253-011-3409-x

Google Scholar

[6] T. Yamamoto, K. Takaki, T. Koyama, K. Furukawa: Bioresour Technol, Vol. 99 (2008) , p.6419.

Google Scholar

[7] R.I. Amann, B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux, D.A. Stahl: Applied and Environmental Microbiology, Vol. 56 (1990) , p. (1919).

Google Scholar

[8] B.K. Mobarry, M. Wagner, V. Urbain, B.E. Rittmann, D.A. Stahl: Applied and Environmental Microbiology, Vol. 62 (1996) , p.2156.

Google Scholar

[9] T. Liu, D. Li, H. Zeng, X. Li, T. Zeng, X. Chang, Y. Cai, J. Zhang: Bioresour Technol, Vol. 118 (2012) , p.399.

Google Scholar

[10] E. Attard, F. Poly, C. Commeaux, F. Laurent, A. Terada, B.F. Smets, S. Recous, X. Le Roux: Environmental Microbiology, Vol. 12 (2010) , p.315.

DOI: 10.1111/j.1462-2920.2009.02070.x

Google Scholar

[11] Y.X. Zhang, Y.L. Xu, M. Jia, J.T. Zhou, S.Z. Yuan, J.S. Zhang, Z.P. Zhang: Journal of Microbiology and Biotechnology, Vol. 19 (2009) , p.1656.

Google Scholar