Characterization of Putative a (1,3)-β-D-glucan (curdlan) Synthase for a Low Molecular Weight Curdlan Biosynthesis from Agrobacterium sp. M503

Article Preview

Abstract:

A β-(1,3)-D-glucan (curdlan) synthase gene for a low molecular weight curdlan biosynthesis, crdSAg, from Agrobacterium sp. M503 was cloned and its encoding protein was characterized by several online protein analysis softwares. The crdSAg consists of 1965-base-pairs Open Reading Frame (ORF) encoding a protein with molecular weight approximate 73.5 kDa, which contains the conserved domain of CESA-CelA_like belonging to glycosyltransferase family 2 (GT2). Moreover, CrdSAg was a membrane protein with seven hydrophobic transmembrance domains. The second structure analysis indicated it was composed of 43.12% α-helix, 17.89% β-sheet, and 38.99% random coil structure. These data will lay a foundation to clarify the biosynthesis mechanism of the low molecular weight curdlan.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

2031-2034

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.J. Stasinopoulos, P.R. Fisher, B.A. Stone and V.A. Stanisich: Glycobiol. Vol. 9 (1999), p.31.

Google Scholar

[2] M. Hrmova, B.A. Stone and G.B. Fincher: Glycoconj. J. Vol. 27 (2010), p.461.

Google Scholar

[3] B.A. Stone, A.K. Jacobs, M. Hrmova, R.A. Burton and G.B. Fincher: Annual Plant Reviews. Vol. 41 (2011), p.109.

Google Scholar

[4] K. Koumoto, M. Umeda, M. Numata, T. Matsumoto, K. Sakurai, T. Kunitake and S. Shinkai: Carbohydr Res. Vol. 339 (2004), p.161.

DOI: 10.1016/j.carres.2003.09.022

Google Scholar

[5] G.T. Kalyanasundaram, M. Doble and  Gummadi SN: AMB Express.  Vol. 2 (2012), p.31.

Google Scholar

[6] B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard and  B. Henrissat: Nucleic Acids Res.  Vol. 37 (2009), p.233.

DOI: 10.1093/nar/gkn663

Google Scholar

[7] S.J. Charnock and G.J. Davies: Biochem. Vol. 18 (1999), p.6380.

Google Scholar

[8] T. Osawa, N. Sugiura, H. Shimada, R. Hirooka, A. Tsuji, T. Shirakawa, K. Fukuyama, M. Kimura, K. Kimata and Y. Kakuta: Biochem. Biophys Res Commun. Vol. 378 (2009), p.10.

DOI: 10.1016/j.bbrc.2008.08.121

Google Scholar

[9] A.L. Lovering, L.Y. Lin, E.W. Sewell, T. Spreter, E.D. Brown and N.C. Strynadka: Nat Struct Mol Biol. Vol. 17 (2010), p.582.

DOI: 10.1038/nsmb.1819

Google Scholar

[10] A. Periasamy, N. Shadiac, A. Amalraj, S. Garajov and Y. Nagarajan:  Biochim Biophys Acta. Vol. 1828 (2013), p.743.

Google Scholar

[11] L. Qiang, L. Hong-lei, Q. Qing-sheng, W. Feng-shan and Z. Yu-zhen: New Biotechnol. Vol. 27 (2010), p.789.

Google Scholar