Polyaniline Nanostructures Doped with Fluorescent TPA-BTD-BN

Article Preview

Abstract:

In this paper, a novel fluorescent material with high conductivity as 0.45 S·cm-1 and strong fluorescence has been successfully synthesized basing on polyaniline (PANI) nanostructures doped with a new prepared fluorescein TPABTDBN. The PANI nanostructures were prepared via a simplified template-free method (STFM) with FeCl3 as oxidant and dopant. The resulting sample was characterized by SEM, IR and fluorescence spectroscopy. The fluorescence intensity of synthesized composite improves with the increasing content of TPABTDBN. The electrical properties of pressed composite pellets were measured from room temperature about 291K down to 132K, the conductance follow the exponential temperature dependence of three-dimensional variable-range hopping (VRH) model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

2679-2683

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. X. Wan, 'Conducting Polymer Nanofibers', in Encyclopedia of Nanoscience and Nanotechnology (Ed: H.S. Nalwa), American Scientific Publishers, Stevenson Ranch, CA (2004), Vol. 2, p.153–169.

Google Scholar

[2] V. M. Cepak, C. R. Martin, Chem. Mater. Vol. 11(1999), p.1183.

Google Scholar

[3] I. D. Norris, M. M. Shaker, F. K. Ko, A. G. MacDiarmid, Synth. Met. Vol. 114(2000), p.109.

Google Scholar

[4] Encyclopedia of Nanoscience and Nanotechnology (Ed: H. S. Nalwa), Vol. 2, American Scientific Publishers, Los Angeles 2004, p.153–169.

Google Scholar

[5] H. J. Ding, J. Y. Shen, M. X. Wan and Z. J. Chen, Macromol. Chem. Phys. Vol. 209(2008), p.864–871.

Google Scholar

[6] M.K. Ram, G. Mascetti, S. Paddeu, E. Maccioni, C. Nicolini, Synth. Met. Vol. 89 (1997), p.63–69.

Google Scholar

[7] Y. Son, H.H. Patterson, C.M. Carlin, Chem. Phys. Lett. Vol. 162 (1989), p.461–466.

Google Scholar

[8] P. S. Antonel, F. V. Molina, E. M. Andrade, J. Electroanal. Chem. Vol. 599 (2007), p.52–58.

Google Scholar

[9] Y. Zhou, Q.G. He, Y. Yang, H.Z. Zhong, C. He, G.Y. Sang, W. Liu, C.H. Yang, F. LBai, Y.F. Li, Adv. Funct. Mater. Vol. 18(2008) p.3299–3306.

DOI: 10.1002/adfm.200800375

Google Scholar

[10] A.G. MacDiarmid, J.C. Chiang and A.F. Richter, Synth. Met., Vol. 18(1987), p.285.

Google Scholar

[11] Y. Z. Long, Z. J. Chen, Y. J. Ma, Z. Zhang, A. Z. Jin, C. Z. Gu, L. J. Zhang, Z. X. Wei, M. X. Wan, Appl. Phys. Lett. Vol. 84(2004), p.2205.

Google Scholar

[12] N. F. Mott and E. A. David, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1979).

Google Scholar