Preparation and Characterization of Graphene by Oxidation-Reduction Method

Article Preview

Abstract:

Graphene was prepared by using hydrazine hydrate to reduce the exfoliated graphite oxide nanosheets in the aqueous colloidal suspension. The prepared graphene were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM), respectively. The results showed that part of oxygen containing groups of the exfoliated graphite oxide nanosheets disappeared and the conjugated p bond recovered after reduction. The thickness and size of the graphene nanosheets decreased.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

2805-2808

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zhou, Y. Wang, Y. Zhai, et a1. Chemsitry-A European Journal, Vol. 15 (2009), p.6116.

Google Scholar

[2] C. G. Lee, X. D. Wei, J. W. Kysar, J. Hone. Science, Vol. 321 (2008), pp.385-388.

Google Scholar

[3] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, et al. Phys Rev Lett, Vol. 101 (2008), No. 26, p.267601.

Google Scholar

[4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al. Nano Lett, Vol. 8 (2008), No. 3, p.902.

DOI: 10.1021/nl0731872

Google Scholar

[5] G. X. Ni, Y. Zheng, S. Bae, et al. ACS Nano, Vol. 6 (2012), No. 5, pp.3935-3942.

Google Scholar

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science, Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[7] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Science, Vol. 312 (2006), p.1191.

DOI: 10.1126/science.1125925

Google Scholar

[8] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H. J. Gao. Adv. Mater. , Vol. 21 (2009), p.2777.

Google Scholar

[9] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong. Nature , Vol. 457 (2009), p.706.

Google Scholar

[10] S. Park, R. S. Ruoff. Nature Nanotech, Vol. 4 (2009), p.217.

Google Scholar

[11] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai. Nature, Vol. 458 (2009), p.877.

Google Scholar

[12] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour. Nature, Vol. 458 (2009), p.872.

DOI: 10.1038/nature07872

Google Scholar

[13] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. Nature Nanotech, Vol. 3 (2008).

DOI: 10.1038/nnano.2008.215

Google Scholar

[14] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman. J. Am. Chem. Soc. , Vol. 131 (2009), p.3611.

DOI: 10.1021/ja807449u

Google Scholar