Preparation and Enhanced Photocatalytic Activity of AgCl-TiO2 Composite under Simulated Solar Light

Article Preview

Abstract:

AgCl-TiO2 nanocomposites with a core-shell structure were successfully prepared by hydrothermal treatment. And the products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer Emmett teller (BET) Analysis, and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the composites consist of anatase TiO2 and cubic phase AgCl, which has higher surface area, stronger spectral response in visible region compared with pure TiO2. The photocatalytic activity of these samples was evaluated by photocatalytic decoloration of methyl orange (MO) under simulated solar light. The results show AgCl-TiO2 composite has much higher photocatalytic activity than that of pure TiO2, and it also has very good stability. The kinetic study showed that this photocatalytic process coincided with the Langmuir-Hinshelwood (L-H) pseudo first order reaction model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

557-561

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Chem. Eng. J. 112 (2005) 191-196.

Google Scholar

[2] I. K. Konstantinou, T. A. Albanis, Appl. Catal. B: Environ., 49 (2004) 1-14.

Google Scholar

[3] M. Özacar, I˙.A. S¸ engil, J. Hazard. Mater., 98 (2003) 211-224.

Google Scholar

[4] G. M. Walker, L. Hansen, J. A. Hanna, S. J. Allen, Water Res., 37 (2003) 2081-(2089).

Google Scholar

[5] R. Aplin, and T. D. Waite, J. Water Sci. Technol., 42 (2000) 345-354.

Google Scholar

[6] C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, J. Environ. Sci., 24 (2012) 464- 472.

Google Scholar

[7] Y. Lin, C. Ferronato, N. Deng, Appl. Catal. B: Environ., 104 (2011) 353-360.

Google Scholar

[8] Y. Ku, P. Chiu, Y. Chou, J. Hazard. Mater., 183 (2010) 16-21.

Google Scholar

[9] L. Zhao, Q. Jiang, J. Lian, Appl. Surf. Sci., 254 (2008) 4620- 4625.

Google Scholar

[10] J. Lu, Y. Dai, H. Jin, B. Huang, Phys. Chem. Chem. Phys., 13 (2011) 18063-18068.

Google Scholar

[11] J. Cao, X. Li, H. Lin, S. Chen, X. Fu, J. Hazard. Mater., 239-240 (2012) 316-324.

Google Scholar

[12] F. Wang, X. Chen, X. Hu, K. Wong, J. Yu, 91 (2012) 67-72.

Google Scholar

[13] B. Palanisamy, C. M. Babu, B. Sundaravel, S. Anandan, J. Hazard. Mater., 252-253 (2013) 233-242.

Google Scholar

[14] R. Guo, G. Zhang, J. Liu, Mater. Res. Bull, 48 (2013) 1857-1863.

Google Scholar

[15] R. Adhikari,G. Gyawali,T. Sekino, S. Lee, J. Solid State Chem., 197 (2013)560-565.

Google Scholar

[16] W. Yi, C. Yan, S. Liu, F. Li, Chem. Eng. (in Chinese), 41 (2013) 62-65.

Google Scholar

[17] B. Indrajit, M. A. Christine, J. Phys. Chem. A. 115 (2011) 868-879.

Google Scholar

[18] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, et al. Pure Appl. Chem., 57 (1985) 603-619.

Google Scholar

[19] S. Kim, T. Lim, T. Chang, C. Shin, Catal. Lett., 117 (2007) 112-118.

Google Scholar