[1]
Ke Chen, Anwar Hussein, Martin E. Bradley, and Haibin Wan. A Performance- Index Guided Continuation Method for Fast Computation of Saddle-Node Bifurcation in Power System. IEEE Trans on Power System, 2003, 18 (2): 753~760.
DOI: 10.1109/tpwrs.2003.811203
Google Scholar
[2]
Andre Arthur Perleberg Lerm et al. Multiparameter Bifurcation Analysis of the South Brazilian Power System. IEEE Trans on Power Systems, 2003, 18 (2): 737~746.
DOI: 10.1109/tpwrs.2003.811195
Google Scholar
[3]
Seydel R. From equilibrium to chaos, Practical bifurcation and stability analysis. Elsevier science publishing, Co. Inc. , (1988).
Google Scholar
[4]
Seydel R. Numerical computation of branch points in nonlinear equations. Numerische Mathematik, 1979, Vol. 33: 981~991.
DOI: 10.1007/bf01398649
Google Scholar
[5]
Ajjarapu V. Identification of steady-state voltage stability in power system. Int. J. Energy. Syst. , 1991, Vol. 33: 43~46.
Google Scholar
[6]
Carpaneto E G, Chicco G et al. A Newton-Raphson method for steady state voltage stability assessment. Proc. Bulk Power Syst. , MD: 1991, PP. 341~345.
Google Scholar
[7]
Chiang H D, Jumeau R J. A more efficient formulation for computation of the maximum loading in electric power system. IEEE Trans on Power Systems, 1995, 10(2).
DOI: 10.1109/59.387898
Google Scholar
[8]
Jarjis J, Galiana F D, Quantitative analysis of steady state stability in power networks. IEEE PAS, 1981, Vol. 100, PP. 318~326.
DOI: 10.1109/tpas.1981.316845
Google Scholar
[9]
Kwatny H G. Stability enhancement via secondary voltage regulation. In Proc. Bulk Power Syst., Voltage phenomenon: Voltage stability and security, Deep Creek Lake, MD ECC. Inc., 1991, p.147~155.
Google Scholar
[10]
Lu J, Liu C W, Thorp J S. New methods for computing a saddle node bifurcation point for voltage collapse analysis. IEEE Trans on Power Systems, 1995, Vol. 10, p.978~985.
DOI: 10.1109/59.387942
Google Scholar
[11]
Wasserstorm E. Numerical solutions by the continuation method. SIAM Rev., 1973, Vol. 15, pp., 89~119.
Google Scholar
[12]
Canizares C A, Alvarado F L. Point of collapse and continuation methods for large AC/DC systems. IEEE Trans on Power Systems, 1992, Vol. 7, p.1~7.
DOI: 10.1109/59.221241
Google Scholar
[13]
Ajjarapu V A, Christy C. The continuation power flow: A tool for solution around the maximum loading point. IEEE Trans on Power Systems, 1992, Vol. 7, p.416~423.
DOI: 10.1109/59.141737
Google Scholar
[14]
Flatabo N et al. Advanced analytical tools in evaluating power system dynamic and security performance, Results of a questionnaire, I symposium of specialists in electric operational planning, Organized by electrobras, 1993, 15(1): 45~53.
Google Scholar
[15]
Mees A I, Chua L. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. CAS, 1979, Vol. 26, p.235~254.
DOI: 10.1109/tcs.1979.1084636
Google Scholar
[16]
Moiola J, Chen G. Computations of limit cycles via higher order harmonic balance approximations. IEEE Trans. Autom Contr., 1993, Vol. 38, p.782~790.
DOI: 10.1109/9.277247
Google Scholar